

PYSEAT: Python Symbolic Execution

Engine and Automated Testing Tool

Juan Manuel Copia

Director: Pablo Ponzio

Diciembre 2020

Universidad Nacional de Río Cuarto.

Facultad de Ciencias Exactas, Físico-Químicas y Naturales.

Departamento de Computación

Abstract

Plenty of efforts are made to improve the quality of software. Most of them are

thorough manual software testing, which involves human resources and time. Testing

automation can improve software quality while reducing the costs of software testing. In

this work, we developed a novel testing automation tool called PySEAT. It automatically

generates test cases for Python programs that use complex data structures. PySEAT only

takes as input the classes implementing the structure and the class invariant and

automatically generates a test suite. PySEAT implements three different test input

generation strategies. We based our work on an existing symbolic execution tool called

PEF: Python Error Finder. PEF is a verification tool based on symbolic execution that

doesn't work well with Python programs that use complex, heap-allocated data structures.

Therefore, we reused part of the symbolic types and the SMT solver interface of PEF and

built upon it a whole new symbolic execution engine, capable of handling complex data

structures through the use of a technique called lazy initialization. We also added a new

module that writes test cases from the results of the program's exploration. We assessed

our tool and its three input generation strategies over several study cases taken from open

source repositories (e.g. Binary search trees, AVLs), and measured the quality of the

generated test suites. In all these study cases, PySEAT's best test input generation strategy

produces test suites achieving high mutation score and branch coverage. We also have

found a bug using our tool in an open source AVL implementation. Our evaluation also

shows that PySEAT is capable of generating tests for covering code of data structures'

implementations that PEF could not cover.

Acknowledgments

To my family and friends for their love and unconditional support.

To Pablo Ponzio for his great guidance and dedication.

I

Table of Contents

1. Introduction .. 1

2. Background ... 6

2.1. Software Testing .. 6

2.1.1. Black-box Testing .. 7

2.1.2. White-box Testing .. 8

2.2. Class Invariants ... 8

2.3. Traditional Symbolic Execution .. 9

2.3.1. Test Generation Example Using Symbolic Execution 11

2.4. Generalized Symbolic Execution .. 15

2.4.1. Generalized Symbolic Execution Example .. 18

3. The Technique .. 21

3.1. A Simple and Representative Example ... 23

3.2. Black-Box Strategy ... 24

3.2.1. Generalized Symbolic Execution of Class Invariant and Concretization..... 24

3.2.2. Traditional Symbolic Execution of the SUT .. 25

3.2.3. Discussion ... 26

3.3. White-Box Strategy Using Fully Conservative Invariants 26

3.3.1. Generalized Symbolic Execution of the SUT... 28

3.3.2. Filtering and Building ... 32

3.3.3. Discussion ... 34

3.4. Exhaustive White-box ... 35

3.4.1. Generalized Symbolic Execution of the Class Invariant 36

II

3.4.2. Traditional Symbolic Execution of the SUT .. 37

3.4.3. Discussion ... 39

4. Implementation ... 41

4.1. Requirements ... 43

4.2. Parsing and Instrumentation .. 44

4.3. Symbolic Types ... 47

4.4. Branching .. 49

4.4.1. Conditional Branching .. 49

4.4.2. Lazy Initialization Branching ... 51

4.5. The Generalized Symbolic Execution Engine ... 52

4.5.1. The Explore Method ... 56

4.5.2. The Results ... 58

4.6. Test Generation.. 60

5. Experimental Evaluation .. 62

5.1. Circular Doubly Linked List ... 63

5.1.1. Discussion ... 65

5.2. Binary search tree .. 66

5.2.1. Discussion ... 68

5.3. AVL ... 69

5.3.1. Discussion ... 71

5.3.2. A Bug Found .. 71

5.4. PEF vs PySEAT .. 73

5.4.1. Singly Linked List .. 74

5.4.2. Binary Search Tree ... 75

6. Related work ... 77

III

7. Conclusion .. 79

7.1. Future work ... 81

References .. 84

A. Usage of PySEAT .. 87

A.1. Installation .. 87

A.2. Parameters .. 88

A.3. Execution .. 89

A.3.1. Measurement of branch coverage and mutation score 90

1

Chapter 1

Introduction

 In the last decades, there has been an enormous growth in the software industry;

software systems are everywhere. As in many other disciplines, software engineering is

prone to human errors. The consequences of these failures range from crashes in uncritical

systems, like video games, to big catastrophes in critical systems such as the Ariane's 5

explosion [20] or NASA's Mars climate orbiter [21]. Although many software

engineering techniques are used to increase the quality of systems, testing is the primary

way industry evaluates software during development [14].

 Manual software testing is very costly; takes time and human resources. The

automation of this practice can reduce the cost of software development while increasing

the quality of software systems. In the last decades, the software engineering community

has extensively explored automatic test generation techniques, originating several

approaches and implementations. To mention some of the most important, we can

highlight Randoop [9], based on random generation, Evosuite [10], based on genetic

algorithms, and PEX [11], based on symbolic execution, among others.

 Symbolic execution allows us to explore the paths of a program using symbolic

values as input [8]. It executes the code under test and constructs formulas holding the

constraints that inputs must satisfy to cover paths of the program (path conditions). We

can use a constraint solver [12] to solve each of these path conditions, producing an input

that exercises that path. Symbolic execution based approaches are popular among

2

researchers because, usually, they produce test suites that achieve high code coverage of

the system under test (SUT.) Nevertheless, modern constraint solvers can only handle

predicates over arrays and basic data types, as integers, floats or strings. To reason about

dynamically allocated structures, we require other approaches [1,2,13]. The existing

symbolic execution tools for the Python language, PEF [3] and PyExZ3 [6], don't

implement these techniques. Therefore, they cannot achieve high code coverage when

dealing with Python programs using complex dynamic data structures. In this work, we

present a novel test automation tool for Python programs capable of handling these kinds

of constructs, called PySEAT.

 Python is one of the most popular programming languages nowadays, thus having

a test automation tool with these characteristics can be of great importance. Moreover,

Python is a commonly used programming language in computer science education, thus

this tool can be effective to teach automated, symbolic execution-based test generation

techniques.

We based our implementation on a tool called Python Error Finder (PEF) [3]. PEF

implements an algorithm that uses the class constructor of user-defined classes to create

inputs for the program under test. It first creates the input instance with the class

constructor. For each of its reference fields, it calls the class constructor to initialize them.

The algorithm continually keeps calling class constructors for each reference field of new

user-defined instances until it reaches a predefined maximum number of objects the input

can have. For instance, for a singly linked list, it successively calls the class constructor

of the node class to initialize the "next" field of new nodes until it reaches the limit in the

amount of nodes. This approach works well with data structures that do not require

aliasing constraints, like acyclic singly linked lists, but it cannot handle more complex

user-defined structures (i.e. data structures containing aliasing constraints), like double

3

linked lists or any tree with parent references. For instance, it cannot create valid instances

of a circular linked list because it cannot satisfy the constraint that the last element of the

list must point to the first element of the list.

Unlike other symbolic execution tools (e.g. Java PathFinder [15], DART [16]),

PEF is built as an external library that runs together with the target program without

changing the interpreter or instrumenting the code under test. Although PySEAT is also

built as an external library, it adds code instrumentation to support complex heap

allocated structures. We built PySEAT on top of PEF's symbolic types and SMT solver

interface. We also added a test generation module to automatically create test suites for

the SUTs.

The hearth of our tool is a novel generalized symbolic execution engine that allows

the analysis of Python programs using complex data (i.e. data structures that can contain

aliasing). Generalized symbolic execution combines traditional symbolic execution with

a technique called lazy initialization to support dynamically allocated complex constructs

[1] .

There are two approaches for test input generation using generalized symbolic

execution: the white-box and black-box strategies [2]. The black-box approach generates

test inputs by performing generalized symbolic execution over the class invariant (it

doesn't consider the SUT's code). The white-box approach generates test inputs by

performing generalized symbolic execution over the SUT and uses the class invariant to

assure the validity of those inputs. Here we implement three approaches, the two

mentioned, and another strategy called "Exhaustive white-box" combining features of

both.

4

 PySEAT takes as input the system under test and automatically generates a test

suite to check the correctness of its implementation. It requires the class under test (CUT)

to have a class invariant implemented as a method of the API, usually called repOK.

PySEAT uses class invariants to build inputs that are valid regarding the specification of

the SUT. Test cases can also exploit class invariants to expose defects by checking if it

holds after the program's execution.

 The original white-box approach [2] requires that the user implements a particular

type of class invariants to work, conservative class invariants. To the best of our

knowledge, there is no sound algorithm to automate the creation of such class invariants

from any given class invariant. Therefore, to automate this process and prevent the user

from implementing a conservative class invariant, we used what we call fully

conservative class invariants (FCI). This allowed the tool to work with any Python class

invariant, but costs in terms of efficiency of using FCI were very high. We tested our tool

using the three strategies over several study cases taken from open source repositories

[19]. On all of them, the exhaustive white-box and the white-box strategies generate test

suites that achieve higher mutation scores and branch coverage than the black-box. In

several cases, the white-box approach using FCI exceeded timeout, and thus, it could not

exercise an important part of the paths of the SUT. Nevertheless, when white-box could

finish its execution, it achieved the same branch coverage and mutation score as the

Exhaustive white-box, but with a smaller test suite.

We also have found an undetected bug in an open-source implementation of an

AVL tree using PySEAT. PEF and PyExZ3 cannot reveal this bug because they cannot

create AVL instances to exercise the paths of the SUT. Besides, to reveal this bug, we

need test inputs (AVL instances) with at least 4 nodes. Therefore, during the experimental

evaluation, the white-box approach cannot find the bug because the execution time

5

exceeds the timeout. The bug can only be found using PySEAT's best strategy (The

exhaustive white-box) and the black-box strategy. We also compare the performance and

capabilities between PySEAT and PEF over two study cases, an acyclic singly linked list,

and a binary search tree with parent references. The results show that PEF cannot generate

valid inputs to exercise the binary search tree implementation, whereas PySEAT was able

to cover all the branches of the code. Also, PySEAT was faster than PEF in the singly

linked list implementation.

Chapter 2 explains the background concepts to understand this thesis. Chapter 3

describes our work: the different input generation strategies, its advantages and

disadvantages. Chapter 4 describes the implementation details of PySEAT. Chapter 5

shows the experimental evaluation of the three test generation strategies for data

structures from open source repositories [19], using branch coverage and mutation score

to evaluate the generated test suites. Also, the last section of this chapter presents the

comparison between PySEAT and PEF. In chapter 6 we present some related works.

Finally, in chapter 7 we discuss conclusions and future work.

6

Chapter 2

Background

2.1. Software Testing

 Software testing is an approach to assess the functional correctness of a software

system. It assesses the degree in which the system complies with its specifications, and

its primary aim is to find bugs [14]. A test case is the atomic unit that exercises a specific

system behavior. It comprises three parts: First, preparing suitable inputs for the system

under test (SUT). Second, executing the system under test with those inputs. And third,

verifying it produces the expected results. A test case fails if the result differs from the

expected, usually exposing a defect in the SUT. The mechanisms used to perform this

comparison are called "test oracles". We call test suites to sets of test cases. Figure 1

illustrates these concepts.

Branch coverage and mutation score are two common metrics to measure the

quality of a test suite. Every control flow structure (e.g. if statements, loops) in the code

can have two outcomes: it evaluates to either true or false. We call these outcomes

"branches" and we say that a branch is covered if it was executed. For instance, if an

execution of an if statement evaluated to true, we say that the true branch was covered.

The branch coverage measures the percentage of executed branches in the program [14].

Mutation score measures the percentage of mutants killed by the test suite. A Mutant is

an alteration in the target's code. We can think of it as a seeded defect in the system under

test. A test case kills a mutant if it detects that the behavior of the mutant differs from the

original version [14]. In other words, a test case kills a mutant if it passes for the original

7

program but fails for the mutant. Therefore, the measurement of mutation score comprises

generating mutants of the program, executing the test suite over them, and calculating the

percentage of killed mutants. In the practice, software testers use automated mutation and

code coverage tools to measure these metrics.

Figure 1

Pseudo-code example of a test suite.

Note. On the left, the program under test. On the right, a test suite with two test cases.

2.1.1. Black-box Testing

 Black-box testing is a method that examines the functionality of the system under

test without considering its internal structure. When creating test suites, the awareness is

on what the system does, but not how it does it. Testers do not inspect the code of the

program (sometimes because they don't have access to). Instead, they base on the system's

requirements and specifications to write test cases [14].

8

2.1.2. White-box Testing

Unlike Black-box Testing, White-box testing specially considers the internal

structure of the software system under test. It focuses specifically on how the system does

its task. Testers inspect the program and derive tests from its source code internals,

specifically including branches, individual conditions, and statements [14].

2.2. Class Invariants

Object-oriented programming languages represent user-defined data structures as

classes of objects. We call objects to instances of a certain class. Complex data structures

often involve a set of constraints that all their instances must satisfy. For instance, the

constraint of traditional singly linked lists is the absence of cycles. This set of constraints

compose the class invariant. Instances violating any constraint are invalid and for this

reason, data structure's implementations mustn't allow creating invalid instances through

the use of their API methods.

Figure 2

Class invariant of an acyclic singly linked list.

9

To be correct, an implementation must meet the following requirements:

● All instances created by the constructor must satisfy the class invariant.

● Each method of the class must preserve the class invariant: Starting from an

instance satisfying the class invariant, the execution of any method of the class

produces an instance for which the class invariant holds.

Class invariants are an excellent resource to verify the behavior of implementations,

and we can implement them as a class-specific method, usually called "repOK". Its task

is to analyze the object's state and return true if it holds the class invariant, or false

otherwise. Figure 2 shows a repOK for a singly linked list data structure, checking the

acyclicity constraint.

2.3. Traditional Symbolic Execution

Symbolic execution is a technique that allows us to execute a program on a set of

classes of inputs. Inputs exercising the same path of the program belong to the same class

of input. Therefore, each symbolic execution result may be equivalent to a larger number

of normal test cases [8]. To represent these classes of inputs, symbolic execution uses

symbolic values as input (instead of concrete ones). Symbolic values are symbolic

expressions which represent the range of potential values that a concrete execution could

produce [4]. Initially, these expressions represent any value in the type's domain, but

when the program performs an operation on the symbolic value, the expression might

change. For instance, if we perform symbolic execution of the code of figure 3, the initial

state of the variables x and y are the expressions X and Y respectively, which represent

any integer value. We will denote symbolic expressions with uppercase bold letters and

variables with lowercase italic letters. Therefore, the initial state of the variables is:

x: X, y: Y

10

And after the execution of line 1, the expression of the variables x changes to:

x: Y * 2, y: Y

Figure 3

Example of control flow

Besides the symbolic values, another component that characterizes the state of

symbolically executed programs is the path condition. The path condition is the set of

constraints the input must satisfy to exercise that path of the program. During symbolic

execution, the program's control flow statements (e.g. if statements, loops) add constraints

to the path condition only if a symbolic value is involved. For instance, the if statement

of line 2 will only add constraints to the path condition involving the symbolic value Y *

2 (pointed by the x variable), because the control flow statement does not involve the

symbolic value X.

 We also call the conditions of control flow statements "branch points", because

they produce a ramification of the program execution. The branch point of line 2 has two

ramifications: assuming "Y * 2 > 10" or assuming "¬ Y * 2 > 10". As symbolic execution

must explore all feasible branches, the algorithm can choose one arbitrarily and add the

corresponding constraint to the path condition. Once the execution of a path ends, the

algorithm backtracks and chooses another branch to explore. The algorithm repeats this

process until it executes all feasible paths. Loops can create infinite branching, so the

algorithm must bound the amount of nested ramifications it can perform.

11

The set of all the constraints collected along the execution of a program path

comprises the path condition. At the beginning of the symbolic execution, it is empty.

The path condition characterizes the inputs that causes the program to follow that path.

We can use a constraint solver [12] to solve those constraints and generate the inputs and

the test case to cover that path. Constraint solvers, also called SMT solvers, can reason

about expressions (constraints) involving different theories like integers, booleans, arrays,

etc. They provide models (solutions) to these constraints. Models are mappings of values

to each variable in the expressions that make all the constraints satisfiable.

The symbolic execution of the example executes two paths, one in which the path

condition is "Y * 2 > 10" and other In which it is "¬ Y * 2 > 10". By solving these

constraints we get two solutions, for example: [Y=6, X=0] and [Y=1, X=0]. Executing

the program with these inputs, we cover all its paths.

2.3.1. Test Generation Example Using Symbolic Execution

Consider the Pseudo-code of the function in figure 4. The program has a defect on

line 8, represented by the false assertion. When it is executed, the program crashes. Here,

the goal of any tester or any automated testing tool is to create a test case that executes

the defect. To do that, we need to find out the input that causes the program to follow that

path. By performing symbolic execution, we can get this information.

12

Figure 4

Pseudo-code of a function with a defect.

Note. The false assertion on line 8 represents a defect in the code.

If we consider all the states in the symbolic execution process of the function, we

get the tree of Figure 5. We refer to this tree as the “symbolic execution tree”. Each node

represents the state of the execution, showing the state of each variable and the path

condition (PC). The process begins with an empty path condition and the symbolic

expressions representing any value of the domain (in our case, any integer). The arcs

represent execution of sentences that lead to each state. Bifurcations in the tree correspond

to conditions in the control flow statements in the program (sentences 3 and 4); the

algorithm chooses a path and continues its execution. Note that after the choice, it adds

the corresponding constraint to the path condition. When the execution of that path ends,

the algorithm backtracks and chooses the other alternative. It repeats this process until it

executes all paths. Eventually, it executes the path with the defect.

13

Figure 5

Symbolic execution tree of funcion on figure 3

Note. Arrows with number n represents the execution of the sentence number n In the function

“func” of figure 4. The squares represent the state of the symbolic execution at each point.

The symbolic execution finds three paths in the program. These paths correspond

to executing the lines: [1,2,3,11], [1,2,3,4,8] (this is the one executing the defect), and

[1,2,3,4,5].

14

Table 1

Results of symbolic execution example.

 Input Return Path condition Solution

1 x = X, y = Y ERROR [Y == X * 2, ¬ (Y != X + 10)] y = 20, x = 10

2 x = X, y = Y X * 2 [Y == X * 2, Y != X + 10] x = 2, y = 4, Ret = 4

3 x = X, y = Y X * 2 [¬ (Y == X * 2)] x = 3, y = 2, Ret = 6

 By solving the constraints of each final path condition, we get the inputs to execute

each of the respective program paths. Table 1 describes the three executions results, along

with a solution that we can get from a constraint solver. With this information, we can

create the three test cases in figure 6, each of them exploring exactly one path from the

program under test. The test suite is minimal in this sense and achieves 100% of branch

coverage of the program.

Figure 6

Test suite result of the symbolic execution of function of figure 4.

15

2.4. Generalized Symbolic Execution

 The original symbolic execution approach [8] cannot handle dynamically

allocated structures on the heap. Among other approaches, Generalized symbolic

execution (GSE) [1] extends traditional symbolic execution to address this problem.

As traditional symbolic execution, GSE uses symbolic inputs instead of concrete

ones. Particularly, it represents heap allocated structures by "partially symbolic

structures". We can define partially symbolic structures as instances that might contain

uninitialized fields. These fields represent undefined parts of the instance that could take

any value of its type domain. Figure 7 illustrates a partially symbolic instance of a set of

nodes forming a binary search tree. Clouds represent uninitialized reference fields, the

"?" sign represents uninitialized primitive fields, and uppercase letters in nodes represent

symbolic integer values.

Figure 7

Example of a partially symbolic binary search tree.

Note. On the left, the node of a binary search tree. On the right, an illustration of a partially

symbolic instance of a BSTNode.

16

 The core idea of GSE is to start the execution of the program with a partially

symbolic instance with all its fields uninitialized. During the execution of the program,

the algorithm initializes the fields on demand. i.e. when they are first accessed. The

initialization depends on the field. On one hand, the algorithm initializes primitive fields

to its symbolic counterpart. On the other, it initializes reference fields (structures) non-

deterministically to one of the following options:

• Null.

• A new, partially symbolic instance (with uninitialized fields) of the field's type.

• An instance created during a prior initialization of a field of the same type.

Any of these alternatives can produce instances violating the method precondition or the

class invariant. When this happens, the algorithm backtracks, discarding the instance and

choosing another initialization option.

 This initialization procedure is called lazy initialization [1]. Figure 8 depicts a

pseudo-code of the algorithm.

Figure 8

Lazy Initialization algorithm

Note. Pseudo-code of the lazy initialization algorithm. Source: [1].

17

While traditional symbolic execution branches only on control flow statements

involving primitive symbolic values (we also call this conditional branching),

Generalized symbolic execution also branches on initializations of reference fields (lazy

initialization branching). When the execution of a path ends, it backtracks and explores

another branch. It repeats this process until it executes all feasible branches. However,

like symbolic execution, cycles can create infinite branching. Therefore, it also needs a

bound on the amount of nested branching it can perform. A common practice is to set a

maximum number of objects that the input can contain.

From each path in the generalized symbolic execution of the program, we get the

path condition (with the same characteristics as in symbolic execution) and instances of

the input structures. With this information we could create a test case to follow each path,

but we must have several considerations regarding to the final state of the structures:

• Destructive updates: If the method changes the input structure (e.g. the

method add of a linked list), the final state of that instance differs from the

original input. Thus, to handle programs that perform destructive updates,

the algorithm builds mappings between objects with uninitialized fields

and objects that are created when those fields are initialized; these

mappings are used to construct input structures [1].

• Once the algorithm recovers the original input, it might still have

uninitialized fields. To make these structures useful for testing, we need to

initialize those fields in a way that the class invariant holds. To achieve

this, one can run GSE on the class invariant with the partially symbolic

instance as input. This process initializes uninitialized fields and we get a

complete valid instance.

18

2.4.1. Generalized Symbolic Execution Example

 Pseudo-code of figure 9 checks if a singly linked list is sorted in strictly ascending

order. We're going to execute the process of generalized symbolic execution step-by-step

on this example. The input of this method is the implicit input "this", i.e. an instance of a

singly linked list. We are assuming acyclicity as class invariant. To keep the example

small, we are going to limit the number of objects the input can contain to two. To follow

the state of the execution, we are going to use the generalized symbolic execution tree of

this method (figure 10). The caption describes the meaning of the symbols present in the

chart. It's important to mention that here, we traverse the tree in an order of our

convenience. But keep in mind that in practice the algorithm might use a different

traversing order, like depth first search (executing a whole path and then backtracking to

explore other options).

Figure 9

Pseudo-code method that checks if a singly linked list is sorted

19

Figure 10

Generalized symbolic execution tree of "is_sorted" method

Note. The tree comprises the states of the generalized symbolic execution of the "is_sorted"

method of figure 9. The states are the nodes of the tree, represented by dashed line squares. Each

state has two parts, on the left, the instance configuration and on the right, the path condition.

Clouds on the instance represent an uninitialized reference field "next", the "?" sign represents an

uninitialized integer field "elem", the symbols "E0" and "E1" are symbolic integers (initializations

of the field "elem"), and solid line squares represent node instances. Arrows with number k are

20

execution of the sentence k of the method. Arrows without a number represent lazy initializations.

Arrows marked with an "X" represent pruned paths.

The process starts with an instance of the linked list with uninitialized fields as

input. Line 2 produces the first access to the reference field "next", and the algorithm non-

deterministically initializes the field to null, a new instance with uninitialized fields, and

to an existing instance of the same type (itself being the only option). The last option

violates the class invariant, so it is discarded. The null initialization makes the program

follow the false branch and return true on line 7 (the list only has one element, so it is

sorted). The initialization to a new instance makes the program follow the true branch.

Before executing line 3, the algorithm initialized the "elem" fields of both nodes. The

execution of line seven corresponds to a control flow branching. For each branch, the

algorithm adds the corresponding constraint to the path condition. The constraint for the

true branch "E0 >= E1" means the list is unsorted, so the algorithm returns false on

sentence 4. The false branch continues its execution until, again, before the evaluation of

the while condition, the algorithm performs an initialization step. This time, the options

are four because there are two existing node instances. The algorithm discards three of

them; two due to a violation of the class invariant and one because it exceeds the limit of

structures. The only valid initialization makes the program follow the false branch and

return true on sentence 7 (the constraint is "E0 < E1", thus the list is sorted).

To sum up, GSE explores three valid paths on the "is_sorted" method. From each

of them, we get the input structure and the constraints over its primitive values (path

condition). As in traditional symbolic execution, we can use a constraint solver to get the

concrete inputs and generate the test cases that exercise those paths.

21

Chapter 3

The Technique

In this work, we have developed a new tool that automatically generates test cases

for Python programs that handle complex dynamically allocated structures, PySEAT. The

tool takes as input an implementation of a complex data structure (e.g. Binary Search

Trees, AVLs), and generates a test suite. It relies on the use of class invariants,

implemented as a method of the class under test, usually referred to as "repOK". Although

it can be easily extended, the current implementation of PySEAT only supports the testing

of methods that take as input the implicit self and parameters of the types integer and

bool. Our primary focus is the support of complex user-defined structures and the

implementation and analysis of three input generation strategies.

Recall from the previous chapters that we can use symbolic execution with lazy

initialization to achieve this purpose. We developed a whole new generalized symbolic

execution engine capable of handling complex user-defined constructs. To achieve this,

we adapt some components from an existing symbolic execution python tool called PEF.

Particularly we reuse parts of its SMT interface and symbolic (primitive) types.

One of the most important parts of test generation is the construction of inputs.

The inputs determine the effectiveness of the test suite in achieving high code coverage

and in finding faults. We can take several approaches of test input generation using the

generalized symbolic execution procedure. In [2] they describe the black-box and white-

box strategies. During the development of the tool, our first attempt was to implement the

22

white-box approach. The major problem was that it relies on a specific type of class

invariants, conservative invariants. As we wanted our tool to work with any class

invariant, we had to make some changes in the strategy. Although the primary aim wasn't

to achieve high efficiency, we found that these "changes" generated important efficiency

issues. On our second attempt, we tried the black-box approach; it had better performance,

but the quality of the test suites generated in terms of branch coverage wasn't good

enough. Therefore, we come up with a novel approach to address these problems. It

combines the black box and white box approach described in [2] taking advantage of the

best qualities from both. We called it the "Exhaustive White-box" approach, and PySEAT

uses it by default.

This chapter is organized in the following way. In section 3.1, we present an

example that we will use to compare the different input generation strategies. Section 3.2

describes the black-box strategy. Section 3.3 describes the white-box strategy and the

problems and disadvantages we have found. Later, on 3.4 we will explain our novel

approach, the Exhaustive White-box, how it addresses the problems of white-box and

black-box, its advantages and disadvantages. Finally, in 3.5 we describe the

implementation details of the entire process. From parsing and instrumentation, to the

module that transforms the results of the execution in test cases.

23

3.1. A Simple and Representative Example

 Throughout the next sections, we will compare the three input generation

strategies using an example that illustrates the primary characteristics of each approach.

Figure 11

Acyclic singly linked list implementation in Python

 Our target is the "is_sorted" method from the acyclic singly linked list of figure

11. It checks whether the integers in the list are sorted in strictly ascending order. We will

limit the number of nodes of the linked list to 4. That will be enough to appreciate the

difference between strategies. Note that the repOK method implements the class

invariant. It checks the acyclicity of the list.

24

3.2. Black-Box Strategy

 The key point of this input generation strategy is that it constructs the inputs for

testing the SUT by performing generalized symbolic execution of the class invariant. It

generates inputs without concern for the SUT's internal structure. We can divide test

generation using this approach in the three stages depicted in figure 12.

Figure 12

Black-box test generation steps

3.2.1. Generalized Symbolic Execution of Class Invariant and Concretization

We perform an exploration of the class invariant (“repOK” method) using GSE. Each

path of the class invariant has two potential outcomes: it returns true, or it returns false.

We ignore paths returning false because it means the instance it creates is spurious. From

the exploration of each of the paths satisfying the class invariant (paths returning true),

we get two things: First, a partially symbolic structure. And second, a path condition

containing a set of constraints that the primitive fields of the structure must satisfy. For

instance, for each path of the repOK method in figure 11, we get a partially symbolic

instance of a list, and an empty path condition because the invariant doesn’t require any

25

constraints over the primitive values. Thus, by solving path condition constraints using a

constraint solver and concretizing the structure (replacing symbolic values with concrete

ones) with the solver model, we got a fully concrete input that holds the class invariant.

Figure 13 shows the instances we get for the linked list example. It’s important to mention

that if the class invariant doesn’t impose restrictions over some fields of the instance, they

might still be uninitialized. This is not a problem because it means they could take any

value, thus we can initialize them to null (in case of reference fields) or to the default

value (in case of primitive fields) during concretization. From a structural standpoint

(without considering primitive values), we get all possible valid structures up to a bound.

Figure 13

Black-box input generation for acyclic singly linked list

Note. Test inputs generated by the Black-box strategy for the method "is_sorted" from a singly

linked list implementation. The bound in the number of nodes is four.

3.2.2. Traditional Symbolic Execution of the SUT

We use each concrete structure generated in the previous step as input to perform

symbolic execution of the SUT, instantiating other parameters (if exist) with the

26

corresponding symbolic type. Finally, we ask the SMT solver for a model to concretize

the symbolic parameters. For our example, this stage works as a normal execution because

in the method "is_sorted" there aren't other parameters. From this stage, we get the full

concrete inputs, so we can create the test cases for the SUT.

3.2.3. Discussion

For the linked list example, we get five test cases, one for each instance in figure

13. These inputs are not very useful; as we are testing a method that checks order, it would

be better to have more input lists with unique integer values arranged in distinct orders.

It doesn't happen because the class invariant doesn't require any constraints over the

integer values of the list, i.e. during GSE of repOK, the path condition ends up empty,

thus the concretization initializes them to zero. Besides, the traditional symbolic

execution stage explores the target with an input structure containing only concrete

values, so the constraints of the path condition don't affect this input either. Therefore,

when using the black-box approach, the input structure will be the same regardless of the

SUT. This usually causes the test suite to miss important parts of the SUT's code.

3.3. White-Box Strategy Using Fully Conservative Invariants

The key feature of this approach is that it tailors the inputs to cover the paths of

the SUT. As a result, we get a small set of inputs that achieve high coverage of the

program under test. In the black-box approach, we performed GSE over the class invariant

to eliminate spurious instances. Here, we first perform GSE over the SUT and use the

class invariant to avoid initializations on the input's fields that cause it to be invalid. The

original white-box approach [1,2] use only conservative class invariants. To allow it to

27

work with any class invariant, we use instead fully conservative class invariants (FCI).

This decision brought several efficiency issues. Most of them emerge when dealing with

more complex structures than linked lists. For this reason, during the following sections,

besides the linked list example of section 3.1, we will use the binary search tree example

of figure 14 to explain those problems. Figure 15 shows the three stages of this approach:

Generalized symbolic execution of the SUT, filtering and building, and test case

generation.

Figure 14

Fragment of a binary search tree Python implementation

28

Figure 15

White-box test generation steps

3.3.1. Generalized Symbolic Execution of the SUT.

 This stage comprises performing generalized symbolic execution directly on the

program under test. As we saw in chapter 2, when performing a lazy initialization step,

we need to ensure that the initialization is valid, i.e., that it satisfies the class invariant.

But since we are dealing with structures with uninitialized fields, the checking of the class

invariant must be conservative. That is, to use the original white-box approach [2], the

user has to implement a repOK that returns false only if the initialized fields violate a

constraint of the class invariant. To the best of our knowledge, there is no sound algorithm

to automate the creation of such repOK from an existing one. As we didn't want the user

to deal with the complexities of coding a conservative invariant, we used instead what we

called a "fully conservative invariant" (FCI). The difference is that during FCI execution

over the partially symbolic instance, it returns true as soon as it accesses an uninitialized

field. This is a simpler process than the original conservative invariants, and any repOK

can be checked automatically in a fully conservative way, but it brings several other

issues. Figure 16 shows on the left the original class invariant, and on the right, a python

code representing the behavior of that class invariant when executed in a fully

conservative way.

29

Figure 16

Concrete class invariant and fully conservative class invariant (FCI) for a binary search tree

Note. On the left, the concrete class invariant. On the right, a representation of the behavior that

the class invariant on the left has when executed in a fully conservative way. The code lines in

bold characterizes the unconventional behavior.

One problem of FCIs is that they cannot detect many spurious instances.

Frequently, when a lazy initialization step creates an invalid instance, the fully

conservative repOK cannot reach the wrong initialization. For instance, consider the

binary search tree implementation of figure 14 and the FCI of Figure 16. If we execute

the fully conservative class invariant over the spurious instance of figure 17, the repOK

finds first the uninitialized left field of the root (line 16), and returns true (line 17). Thus,

it cannot reach the invalid initialization (the cycle of the right child of the root), and the

execution continues with a spurious structure that passes unnoticed.

30

Figure 17

Spurious instance of a binary search tree

These spurious instances produce further problems. As the methods expect to

receive valid instances as input, spurious instances can generate infinite loops and stack

overflows. For example, during the exploration of the "insert" method of figure 14, lazy

initialization steps can generate the spurious instance in figure 17, producing a stack

overflow in the recursive call in line 16 (figure 14). The trace that generates the stack

overflow is: [1,3,4,5,11,12,15,16]. To solve these issues, we set a limit in the amount of

times the execution can call a getter method of a field with no field being initialized.

 We also have to consider the cases when the method under test performs

destructive updates over the input. In these cases, the structure we get at the end of the

exploration is not the original input. To take care of this, during the execution of each

path, we keep two structures: The one that is being used and changed by the method, and

another in which the only modifications are the applications of initialization steps, i.e.

after each successful initialization on the destructively updated structure, our algorithm

performs the same initialization in the "control" structure. Thus, this second structure

represents the original input, and we use it as input for test cases.

Like in the black-box input generation, the result of the generalized execution is a

partially symbolic instance of the data structure, and a set of constraints over its primitive

values. But since here we are not executing the class invariant, the instance we get might

31

still have uninitialized fields. This is because the target method may not explore all parts

of an input structure. And thus, some fields are not initialized. Therefore we can't

concretize the structure directly as in the previous approach. Like the linked list example

is simple, we end up only with valid list instances with all its fields initialized. But when

dealing with more complex structures, like the BST of figure 14, these situations are very

frequent. For instance, Figure 18 illustrates the result of the exploration of some paths of

the insert method of the BST. It contains valid and invalid instances. To create valid test

cases, we need to eliminate the invalids and build the valid ones. By "build" we mean to

initialize uninitialized fields in a way that the structure is valid and "concretize" the

structure (replace symbolic values for concrete ones). We perform these actions in the

next stage.

Figure 18

Partially symbolic instances of a BST tree

Note. The Clouds represent uninitialized reference fields. The instances of the right are invalid

because they contain initialized cyclic references.

32

3.3.2. Filtering and Building

 To create valid test cases, we need to use valid structures as input. Thus first, we

need to remove the spurious structures from the previous stage. And second, we need to

build the valid structures. The only asset we have to decide whether a structure is valid is

the class invariant. Therefore, to detect spurious structures and to build valid ones, we

perform GSE on the class invariant. i.e. we explore the repOK method (with a limit in the

number of structures it can add) with the partially symbolic instance as input and its

constraints as the initial state of the path condition. This process will initialize

uninitialized fields until one of the next things happens:

1. The repOK finds a path that returns true: It means that the structure was not

spurious and that it found a valid initialization. The instance is now “built” and

the algorithm will use it as a test input.

2. The repOK finishes and all its paths returned false: It could mean that the

structure was invalid (it had invalid initialized fields). Remember that the class

invariant will only instantiate uninitialized fields. Or it could also mean that the

structure was valid, but the bound was not enough to build it. In both cases, the

algorithm discards the structure.

The algorithm does this process for each instance it creates in the previous stage. Note

that case 2 is a heavy process computationally, because it performs a complete exploration

of the class invariant. As the number of infeasible structures produced most times is very

large and detecting them is very heavy computationally, the white-box strategy with fully

conservative invariants is very inefficient.

33

Figure 19

Pseudo-code that filters spurious structures and completes valid ones

Finally, if it was possible to build the instance, we concretize it by asking the SMT

solver to solve the constraints. Figure 19 shows the pseudo-code that describes the

behavior of the entire stage. Figure 20 shows the inputs that this stage generates for the

example of section 3.1.

Figure 20

White-box input generation for acyclic singly linked list

Note. Test inputs generated by the White-box strategy for the method "is_sorted" of the singly

linked list implementation. The bound in the number of nodes is four.

34

3.3.3. Discussion

Each of the inputs in figure 20 covers exactly one path of the generalized symbolic

execution tree, without repetition. This is because the algorithm executes the SUT, adding

constraints to the inputs that cause the program to follow different paths. Thus, the test

suite we get is usually small and achieves high branch coverage for the program under

test.

 To make this approach work with any class invariant, we use fully conservative

invariants (FCI) instead of conservative invariants as the original approach [1,2]. We

make this decision because we didn't want the user to deal with the complexities of coding

a conservative class invariant, and because, to the best of our knowledge, there is no sound

algorithm to convert a concrete class invariant into a conservative one. We can run any

class invariant in a full conservative way, but this procedure cannot detect all spurious

instances during lazy initialization steps, and thus, these invalid instances provoke several

problems: infinite loops during GSE of the SUT, unnecessary computations and the need

to perform GSE over the class invariant with the instance as input to erase invalid

constructs before test generation. Solving all these problems, especially the last one,

makes the implemented strategy very inefficient.

35

3.4. Exhaustive White-box

 Black-box approach generates test inputs that are not "guided" by the structure of

the code in the SUT. Thus, in many cases, it misses covering important parts of the code.

On the other hand, the white-box approach excels in this aspect. Because it constructs the

inputs specifically to achieve the coverage of the SUT. Nevertheless, the approach we

took to automate it lacks efficiency; when dealing with more complex data structures, like

AVLs, the time to generate test cases is enormous even for little scopes. Thus, it cannot

cover the parts of the code that need larger inputs. To sort these obstacles, we have

developed a new strategy that takes the best out of both approaches. We called it

Exhaustive White-box.

 Our aim is to perform a white-box input generation to achieve high code coverage

of the target, but more efficiently. The core idea is to avoid the root cause of most of the

downsides of the white-box strategy: the use of fully conservative invariants. The

function of a conservative invariant is to eliminate invalid initializations during GSE of

the SUT. To get rid of it, we need a different way of removing spurious constructs. We

accomplish this purpose by using a process similar to the black-box technique to solve

structural constraints before exploring the target method. In this way, there is no need to

perform GSE on the SUT because we already have the input, and thus, we only perform

traditional symbolic execution of the program under test.

36

Figure 21

Exhaustive White-box test generation procedure

 This strategy works in three stages: Generalized symbolic execution of the class

invariant, traditional symbolic execution of the method under test, and finally, test case

generation.

3.4.1. Generalized Symbolic Execution of the Class Invariant

 This step is like the first step of the black-box technique, with the difference that

at the end of the class invariant's exploration, it doesn't concretize the instances. The

black-box method solves the constraints over primitive inputs and gets a valid concrete

input structure. Here, we don't concretize the structures because those constraints contain

valid information that we can take advantage of; they describe the classes of values that

make the instance valid. Therefore, we use those partially symbolic instances and the

constraints over its primitive values as input to perform traditional symbolic execution on

the SUT. Figure 22 shows the results applied to the linked list example. The integer

elements of the list are not initialized because the repOK method doesn't access them.

The path condition is always empty for the same reason.

37

Figure 22

Results of this stage applied to the example in section 3.1

3.4.2. Traditional Symbolic Execution of the SUT

 For each pair (instance, constraints) from the previous stage, this step uses the

symbolic instances as input to perform traditional symbolic execution of the SUT, using

its constraints as the initial state of the path condition. During the symbolic execution of

each pair, the target method will add new constraints to the path condition. These new

constraints shape the primitive values of the input to explore different branches of the

SUT. A nice consequence of using the constraints from the previous stage as the start

state of path condition is that during method exploration, the algorithm discards the

execution of paths that violate the existing constraints, producing further pruning.

 From each instance from the previous step, this stage will probably create several

inputs, varying its primitive values but maintaining the structural shape. Finally, we have

to concretize the primitive fields using the model provided by the SMT Solver. Figure 23

shows the results when testing the linked list example. Note that from a structural

standpoint (i.e. taking into account reference fields only), it is exhaustive (there is an

38

empty list, lists with only one node, with two nodes, and so on). We can also observe that

for each structural possibility it covers all feasible primitive constraints from the code.

For instance, for lists containing two nodes, it covers both values of the constraint in line

3 of figure 11: First int >= Second int, and ¬ First int >= Second int. After this stage,

the only thing left is to create the test cases.

Figure 23

Exhaustive white-box input generation for acyclic singly linked list

Note. Test inputs generated by the Exhaustive white-box strategy for the method "is_sorted" of

the singly linked list implementation. The bound in the number of nodes is four.

39

3.4.3. Discussion

 The core characteristic of this last strategy is to first create the inputs by running

GSE over the class invariant, like the black-box approach, but keeping those inputs

symbolics. This process discards the spurious instances generated during GSE and

initializes all the fields that determine the validity of the structure. Consequently, during

the symbolic execution of the SUT, it avoids lazy initialization steps and thus, the use of

Fully conservative class invariants, that were the root cause of inefficiency in our white-

box approach implementation. It's also important to mention that it can work with any

class invariant, and not only with conservative ones. Another consequence is that it avoids

special handling of methods performing destructive updates because we already know

what the initial input is.

 We say that this method is a combination of the white-box and the black-box

approaches for two reasons. On one hand, from a structural standpoint, it behaves as the

black-box strategy because it creates the structure of the inputs (configuration of the

reference fields) guided by the class invariant instead of the SUTs code. This leads to an

exhaustive generation of inputs in terms of their structure, i.e. the inputs it creates are all

the valid configurations of reference fields. On the other hand, from the primitive values

standpoint, it behaves like a white-box strategy; the value of primitive fields depends

strongly on the SUT.

 As we can see from our experimental section, both the Exhaustive white-box and

the white-box using fully conservative invariants get the same branch coverage and

mutation scores for scopes where both can reach in the defined timeout. A key advantage

of the white-box strategy is that it generates smaller test suites, but because of its

inefficiency, it usually exceeds the time limit even for small scopes, generating smaller

40

inputs that cannot cover important parts of the SUT's code. On the flip side, the

Exhaustive white box creates plenty of test cases that exercise the same path, making the

test suite enormous.

41

Chapter 4

Implementation

In this chapter, we present the implementation of PySEAT, its principal

components, the role that each of them has and the interactions between each other. Figure

24 depicts the architecture of PySEAT. We implement symbolic execution using the Z3

SMT Solver. We also reuse and adapt the Symbolic types and the SMT interface from the

PEF tool [3] .

Figure 24

PySEAT's architecture

42

The major components of PySEAT are:

● Parsing and Instrumentation module: To perform generalized symbolic

execution, the engine requires an instrumentation of the SUT's code and also

information about the data types of its objects and methods. The function of this

component is to fulfill that requirement by parsing the types and instrumenting the

code.

● Generalized Symbolic Execution Engine: It is the core component of the entire

system. Its function is to perform the symbolic exploration of the instrumented

SUT. To do so, it coordinates the interactions between Symbolic Types and the

SMT Solver. For this reason, it is highly attached to them. Finally, it gathers the

exploration results for the Test Generation module.

● SMT Solver: It's key to the symbolic execution process; it decides the satisfiability

of path conditions and provides the required models to concretize the input and

output structures. The SMT interface it's an API to allow the communication

between the engine and Z3.

● Symbolic Types: They replace the concrete primitive types during the symbolic

execution. Symbolic types emulate the behavior of the primitive ones but

symbolically, by holding symbolic expressions that characterize the value of the

symbolic instance. These symbolic expressions are formulas from the Z3 solver

describing operations between Z3 variables. Initially, the formula of a symbolic

instance is a reference to a Z3 variable. That is, symbolic values of each symbolic

type instance are represented by a variable from the Z3 solver. The Z3 variables

can represent single values (e.g. a symbolic value X) or operations between single

values (e.g. X + Y). Operations over symbolic instances generate the formula

describing the same operation between the Z3 solver variables.

43

● Test Generation: It takes the results of the exploration and generates the code of

the test cases.

4.1. Requirements

 One objective we had in mind during the development was to minimize the effort

that the user must perform to use the tool. The goal was to automate trivial tasks as much

as possible. Therefore, we reduced the requirements needed by PySEAT to just two:

● Implementing a repOK method on the Class Under Test: This method

implements the class invariant and is necessary to discard invalid instances of the

class during symbolic execution. This avoids the generation of test cases with

spurious instances.

● Adding of type annotations: Python is a language with dynamic typing; types of

variables and parameters are not present in the code. But since Python 3, the

language supports type annotations of parameters and fields. The engine requires

knowing the types to initialize objects with the appropriate symbolic type.

Therefore, PySEAT expects the user to annotate the following elements on the

SUT through Python Annotations:

- The constructor of every "relevant" class: The parameters of the

constructor must be annotated. The self annotation can be omitted because it

is always inferred. We say a class is "relevant" when it is the type of a

parameter of some method under test, or when it is the type of a field in the

CUT or in any other relevant class.

- The formal parameters of every method under test: Every method under

test must have its formal parameters annotated. Again, self annotation can be

omitted.

44

To sum up, the user has to annotate the types of the relevant classes (if they are

not annotated yet) and implement the class invariant as a method of the class called

"repOK". With this information, PySEAT can generate the test suite. Figure 25 shows an

example of the type annotations over a doubly linked list.

Figure 25

Example of types annotations for a doubly linked list

4.2. Parsing and Instrumentation

To allow the generalized symbolic execution engine to work, we need to parse the

type annotations and instrument the SUT's code. To be clearer about how we implement

this process, we are going to use the concrete example of figure 25. The parsing is done

45

automatically by the interpreter, so we will not enter into the details of this process. On

the other side, understanding the instrumentation is key to understanding how the

symbolic execution engine works. The instrumentation comprises the addition of class

attributes and instance attributes to each relevant class in the SUT.

Class attributes are variables that belong to the class rather than a particular

instance. All instances of a class share the same class attributes. We add the following

class attributes:

1. The _engine field: It is a reference to the symbolic execution engine. It allows the

class to call methods of the engine instance. The function of this reference is

strongly correlated to the addition of Python properties to manage access to each

field of the class (see item 3 below).

2. The _vector field: It is a list that during GSE, it will contain all the class instances

created during lazy initialization steps.

3. Python properties to manage access to each field of the structure: Properties

are a feature of Python that allows managing access over fields of the instances

[17]. More precisely, they allow specifying what to do when the value of the field

is required (acting as a custom getter method) and what to do when the value of

the field is changed (acting as a custom setter method). Thus, through python

properties, we add our custom getters and setter methods for each field:

- The getter method: it derives the getting method to the method "_get_attr"

from the engine.

- The setter method: It derives the responsibility of setting the value to the

method "_set_attr" from the engine.

46

Through these python properties, we achieve to "hook" every access to the fields

of an instance. The engine has full responsibility for getting and setting the

corresponding values.

Instance attributes are variables that belong only to each particular instance, i.e.

they are only accessible in the scope of the instance they belong. The algorithm adds these

variables to each instance after they are created. They are:

1. An initialized mark for each field of the class: This mark is true when the field

is initialized, and false otherwise.

2. An id field: A unique number that identifies the instance.

Returning to our example, figure 26 shows the instrumented doubly linked list.

It's important to remark that PySEAT never changes the source code of the target on the

file. It's only an illustrative example. Because of the flexibility and capabilities of Python,

PySEAT does the instrumentation process dynamically rather than statically. We achieve

the desired result by adding the mentioned elements in runtime instead of changing the

source code before program execution. This process is transparent to the user. The module

instrumentation.py adds the instrumentation class attributes. The engine adds the rest of

the instrumentation instance attributes when it creates partially symbolic instances during

the generalized symbolic execution.

47

Figure 26

Example of Instrumentation for a Doubly linked list

Note. This is only an illustrative example of the instrumentation for the doubly linked list of figure

25. PySEAT instruments the classes dynamically.

4.3. Symbolic Types

 As we said before, we took the symbolic types implementation from PEF [3]. PEF

takes advantage of a key Python feature to implement symbolic execution. In Python, and

in many other languages, all data are objects. Thus, all operations over objects (including

primitive types) are translated into method calls of these objects. For instance, during the

execution of a Python program, to evaluate the expression x + y, the Python interpreter

calls x.__add__(y). Moreover, Python is a dynamically typed language. These features

allow us to implement symbolic execution by implementing the symbolic types and using

48

them instead of the primitive ones to execute the target program. Symbolic types must

reimplement all the operations of their primitive counterpart, but symbolically. Instead of

concrete values, they hold symbolic expressions which describe the operations applied

between symbolic values. They create these symbolic expressions using the constraint

solver (in our case, Z3). For instance, a symbolic integer must implement, among others,

the method __add__. Thus when symbolically executing the same expression x + y, as x

and y are symbolic integers, the Python interpreter calls x.__add__(y) that belongs to the

symbolic integer instance x. The __add__ method will create and return a new symbolic

integer instance holding the Z3 expression (or formula) X + Y, where X and Y are

variables from the Z3 SMT solver representing symbolic values.

In the same way, whenever the execution of a program needs the bool value of an

object to continue its execution, the Python interpreter calls the method __bool__ of that

object, which returns true or false, depending on that instance. For example, in figure 27,

when the execution reaches the if statement, the interpreter calls the __bool__ method of

the instance "myobj". This method will evaluate the instance and return its boolean value.

If it returns true, the execution will execute the "then" block, otherwise it will execute the

"else" block.

Figure 27

If statement in Python

Note. When evaluating the if condition, the interpreter calls the method __bool__ of “myobj”

which decides its boolean value.

49

4.4. Branching

 As we saw in section 2.4, there are two kinds of branching possibilities during

generalized symbolic execution: Conditional branching and lazy initialization branching.

4.4.1. Conditional Branching

To perform symbolic execution, PySEAT replaces concrete arguments by their

symbolic counterparts (e.g. SymInt for integers, SymBool for booleans). Therefore, we

represent all boolean expressions involving symbolic objects by instances of SymBool.

 Consider also the example of figure 28. When we execute this function

symbolically, the arguments x and y are symbolic integers. When the execution reaches

the "if" statement (line 1), Python interpreter resolves it in two steps:

1. It calls the corresponding function that implements the operator, in this case, the

expression x > y is resolved by calling x.__gt__(y). As it is a boolean expression,

the __gt__ method of the symbolic integer class returns a symbolic bool instance

(SymBool) representing the expression X > Y.

2. Now that the expression is already resolved, we have to determine the truth value

of the SymBool object for the program to continue its execution. Thus the

interpreter calls the __bool__ method from that symbolic bool instance to decide

its value.

Figure 28

Python function that returns the maximum of two integers

50

 The if statement of figure 28 represents an example of conditional branching in a

symbolically executed program. Conditional branching is generated whenever the

interpreter reaches a condition in a control flow statement involving symbolic primitive

values. In these cases, the algorithm of symbolic execution must consider the feasibility

of both potential values of the symbolic expression (true and false). In these cases, the

interpreter calls method __bool__ of the symbolic expression. This method derives the

responsibility of handling conditional branching to the engine. As shown in figure 29, the

method "evaluate" is the handler of conditional branching from the engine.

Figure 29

__bool__ method from SymBool

 The engine handles conditional branching in a deterministic way; it always

explores first the true branch and leaves the false branch for future exploration. It checks

the feasibility of the decision with the current path condition using the constraint solver.

It only proceeds with the execution of a branch if it is feasible. It is also optimized to

check feasibility of the same conditional branch point only once; it remembers the

answers of the constraint solver regarding the feasibility of a condition and a path

condition.

51

4.4.2. Lazy Initialization Branching

 As we saw in the instrumentation section, all accesses to the fields of a partially

symbolic structure have a hook to the engine; during symbolic execution, the engine

manages the initializations of all fields of the structure. Figure 30 shows a pseudocode of

the engine's getter and setter methods.

Figure 30

Pseudocode of the methods from the engine that handle the access to the fields of structures

When the value of a field is required, the _get_attr method is called, and it works as

follows:

• If the field is already initialized, it returns the value of the attribute. Its type doesn't

make a difference.

• If the field is uninitialized and it is of a primitive type, _get_attr marks it as initialized

and sets its value to a symbolic instance of the corresponding type.

• If the field is uninitialized and it is of a reference type, _get_attr marks it as initialized

and the method lazy_initialization performs a lazy initialization branching. As in

conditional branching, the engine chooses initializations deterministically. It will

52

explore the first option and leave the others for future exploration. It follows the next

order:

1. A new instance of the same type.

2. Null.

3. To each instance of the same type created during a prior initialization.

After the initialization, if the strategy in use is the white-box technique, the algorithm

runs the class invariant in a full conservative way to check if the initialization makes the

structure spurious. If it does, that branch is discarded. As we described before, it is

possible that the FCI class invariant does not detect the invalid initialization because it

first reaches an uninitialized field. If that is the case, the execution will be discarded

during the process of filtering and building described in 3.3.2. In the black-box and

exhaustive white-box input generation strategies, there is no need to check lazy

initializations because in these cases we are performing symbolic execution over the class

invariant, and thus, on invalid initializations the repOk method will return false and the

algorithm will discard that input.

When a field is modified, the _set_attr method is called. This method only sets

the field as initialized, initializes the field with the new value and returns that value.

4.5. The Generalized Symbolic Execution Engine

 During this section, we will explain how PySEAT performs Generalized Symbolic

Execution (GSE). Throughout the following paragraphs, we will refer to the term path.

Keep in mind that we are referring to a path of the generalized symbolic execution tree,

and not a path of the actual graph of the code. When we say a path is explored, it means

it was executed using GSE.

53

The engine works by sequentially exploring one path of the program at a time. It

replaces concrete values with primitive ones and starts the execution. As we explained in

the previous sections, the control will be given back to the engine in every field access of

the structure and in every branch point that occurs. PySEAT remembers the decisions

taken in the different branch points along a path. It represents these decisions by the

classes ConditionalBranchPoint and LazyBranchPoint. Both classes are implementations

of the abstract class BranchPoint shown in figure 31. Instances of these classes hold the

decision taken at that branch point. For instance, the conditional branch points hold

whether the branch evaluated to true or false, while lazy branch points represent whether

the lazy initialization step of some reference field was made to a new instance, null, or to

an instance created in a prior step.

Figure 31

BranchPoint abstract class

54

The core idea of this representation is that the algorithm can remember the path

taken by stacking the BranchPoints generated during the exploration. A path in the

symbolic execution tree is only characterized by the decisions taken in the branch points

along that path. In that manner, by choosing always the same decisions, we traverse the

same path again. And, by changing the decision on top of the stack, we traverse an

unexplored path. This method leads to a bounded depth-first search exploration of the

generalized symbolic execution tree.

For instance, consider the Python version of the "is_sorted" example in figure 32.

There are only two sentences in the code that create branching. Sentence 2 corresponds

to a lazy initialization of the reference field "next" (the field "next" of the "current" node

is always first accessed at this line) and sentence 3 corresponds to a conditional branch

point (the condition in the if statement involves the symbolic integer instances of "elem").

Figure 32

Python version of the "is_sorted" example

55

Figure 33

Representation of the stack of branch points

Note. On the left, an example of a stack of branch points that describes the decisions taken along

a path of the GSE of the is_sorted method, specifically the path: [1,2,3,5,2,3,5,2,6]. On the right,

the input instance that is created because of those decisions. The numbers represent the branch

point decision that generated that change.

The stack illustration of figure 33 belongs to a generalized symbolic execution of

a path of the is_sorted method. Particularly, the path with the trace [1,2,3,5,2,3,5,2,6].

Note that the stack describes the initializations taken at each branch point. By taking the

same decisions, we explore the same path, getting the input instance of the right side of

the picture. If we change the decision on top of the stack (i.e., change the branch point at

index 4 to an existing instance instead of null) and execute the program following those

decisions, we explore another path of the generalized symbolic execution tree. The int

variable current_bp is an index indicating the current branch point, in this case, it is

pointing to an inexistent branch point (index 5).

56

Figure 34

Pseudocode of the method that manages the execution of the paths the target program

4.5.1. The Explore Method

The exploration of the target program is managed by the "explore" method from

the engine (figure 34). Initially, the stack of branch points and the path condition are

empty, and current_bp is 0. The symbolic execution of a path of the program is triggered

by the method _explore_path (line 6). Once the execution of a path starts, the control of

the execution goes back and forth between the engine and the target program. The engine

will intervene in each field access and in each branch point in the program. When the

control is given back to the engine because of branching (for both conditional branching

and lazy initialization branching), the engine handlers proceeds as follows:

• If there is a branch point in the stack for the current_bp index (i.e. if current_bp

points to a valid index in the stack) it means that a prior exploration already

determined the current path, and thus it takes that decision and advances the

current branch point (current_bp += 1).

• If there is not a branch point in the stack for the current index, it means the engine

is executing that branch point for the first time, and thus chooses an option,

creating and adding the new branch point (describing the decision taken) at the

57

top of the stack. As the algorithm is deterministic, the first options will always be

"true" for conditional branching and "new instance" for lazy initialization

branching. After it adds the new branch point, it increases the current branch point

(current_bp += 1).

Eventually, the execution of that program path will end and the explore method yields

(line 7) the results generated during the execution of that path (these results comprise the

inputs and outputs necessary to create a test case for that path). That leaves the engine

with a stack of branch points characterizing the executed path.

Figure 35

Method that prepares the stack of branch points to the execution of the next path

Then, the method _set_next_path presented in figure 35 and called in the explore

method at line 9, changes the decision at the top of the stack for the next one. For instance,

if there is a LazyBranchPoint at the top of the stack describing the decision "New

instance", it sets it to the next value, that is "none". If the branch point of the top of the

stacks holds the last option of that branch point (e.g. a ConditionalBranchPoint instance

holding the option "false"), the method pops the element in the top of the stack and calls

itself recursively. This procedure causes the stack of branch points to describe a new path

(a path never explored before). Finally, the method returns true if there are still branch

58

points on the stack, meaning there are still unexplored paths. It returns false if the stack

of branch points is empty, meaning that there are no more paths to explore. If there are

still paths to explore, the loops start again and the method _reset_exploration will set the

current_bp to 0 and empty the path condition. This time, the stack of branch points

already contains a set of branch points describing a path. Therefore, the method

_explore_path will execute the program but this time following the decisions described

by those branch points, which leads to an execution of an unexplored path. The entire

process described continues until all feasible paths (bounded) are executed.

The engine bounds the exploration of paths with a limit in the maximum number

of conditional branch points it can make, and with a limit in the maximum number of new

instances it can create in reference field initializations. For instance, we can bound the

"is_sorted" method to create instances with a maximum of five nodes and with a

maximum of 10 conditional branch points allowed in the stack. These restrictions avoid

infinite loops because the engine stops exploring the paths violating them.

4.5.2. The Results

When the execution of a path ends normally (it is not pruned by a violation of the

bounds), the engine invokes the solver to get a model of the path condition's constraints.

With the model, the engine concretizes the input and output of the execution. It also

collects any exception raised and the final status of the execution. The following results

are possible:

● PRUNED:

- It exceeds the depth limit.

● OK:

- It ends normally (doesn't throw exceptions).

59

- The structure that results from the execution satisfies the class

invariant.

● FAIL:

- It ends normally (doesn't throw exceptions).

- The structure that results from the execution doesn't satisfy the

class invariant.

● TIMEOUT:

- It ends with a TimeoutException. The execution exceeded the time

limit.

● EXCEPTION:

- It ends with an exception different from TimeoutException.

As PySEAT already knows the status of the test, it will point out the expected

result of each generated test case before it calls the test generation module. Figure 36

shows an example of the output of PySEAT during the exploration of a method. Finally,

the algorithm passes the concretized elements to the test generation module.

Figure 36

PySEAT output during method exploration

60

4.6. Test Generation

This module generates the test suite. Specifically, one test case for each path of

the target method. Each test has the following parts:

1. The input generation: Comprises the Python code to generate the structure

(the implicit input self).

2. The call to the method under test.

3. A repOK invocation on the resulting instance: To ensure the method under

test leaves the input structure in a state that holds class invariant. The repOK

is an oracle that allows PySEAT to find failures in the CUT.

4. Regression assertions: Assertions that check the outputs of the method call,

including the final state of the input structure. They only check the current

behavior of the target, so it doesn't mean it is necessarily the correct behavior.

These assertions allow the test suite to work for regression testing.

Optionally, PySEAT can generate a test comment showing the input, the expected

result and the expected output of the execution using the __repr__ method of the classes.

PySEAT also generates special test cases when the execution of a path throws a

TimeoutException. For these cases, it uses a feature of the test runner pytest, which sets

a timeout for the test execution. When pytest runs this test, if the execution takes longer

than the time limit, it reports it as a failure. Figure 37 shows a normal test case and figure

38 shows an example of a timeout test case.

These special test cases allow PySEAT to create test cases that reveal infinite

loops. The time limit is the same used during method exploration and it is a parameter

provided by the user. Although the tool uses the pytest test runner, any test runner can

run the generated test cases.

61

Figure 37

A test case for the insert method of a Binary Search Tree generated by PySEAT

Figure 38

PySEAT test case that reveals an infinite loop in a method from a doubly linked list

62

Chapter 5

Experimental Evaluation

 We assessed the three implemented strategies on three study cases taken from

open source repositories: Circular doubly linked list, binary search trees, and AVLs [19].

We took the implementations from open-source repositories. We execute each strategy,

varying the limit in the amount of nodes of the structure. The metrics we used to assess

each strategy are: The amount of test it generates, the execution time of the test generation

and the branch coverage and mutation score of the generated test suite. We only generate

tests for the methods from each data structure relevant to its functionality. That is, we

exclude from testing methods related to string representation (__repr__), methods related

only to the class invariant (repok) and methods that the relevant methods depend on but

they are not important by themselves (for instance, the rebalancing methods from an AVL

were excluded from testing as they are tested indirectly by the methods insert and delete),

although we do measure branch coverage and mutation score over this last set of methods.

 We also compared the exhaustive white-box strategy with PEF. We contrast the

performance of each tool over two data structures. A simple structure like a singly linked

and a complex one like a binary search tree with parent references. We used the tools

coverage.py and mutmut to measure branch coverage and mutation score, respectively.

Sections 5.1 to 5.3 shows the results for the different case studies. Specifically, in

5.3.4 we explain the bug our tool finds in the AVL implementation. Finally, in section

5.4 we compare our tool with PEF.

63

5.1. Circular Doubly Linked List

Figure 39

Circular doubly linked list definition

 Figure 40 shows the definition of the classes that implements the data structure.

We generated tests for five methods:

● insert_after(self, afterkey: int, key: int): Inserts a new node in the list with the

value "key" after a specific node with key "afterkey".

● insert_before(self, beforekey: int, key: int): Inserts a new node in the list with

the value "key" before the first node with value "beforekey".

● delete(self, deletekey: int): Deletes the first node on the list with the value "delete

key".

● append(self, key: int): Inserts a node with the value "key" at the end of the list.

● prepend(self, key: int): Inserts a node with the value "key" at the beginning of

the list.

64

Table 2

Black-box statistics for Circular doubly linked list

Node Limit RepOK structures Tests Time (secs) Branch Coverage Mutation Score

1 2 13 0.5 70% 37.3%

2 3 21 1.1 88% 53.3%

3 4 29 1.8 88% 56.0%

4 5 37 2.6 88% 56.0%

5 6 45 3.6 88% 56.0%

6 7 53 5.0 88% 56.0%

7 8 60 6.2 88% 56.0%

8 9 67 7.8 88% 56.0%

 In Table 2 we show the results for CDLL using the black-box strategy. The

maximum branch coverage and mutation score this strategy achieves are 88% and 56%

respectively. It reaches these bounds with a limit of only three nodes. Using over three

nodes doesn't increase neither the branch coverage or the mutation score.

Table 3

White-box statistics for Circular doubly linked list

Node Limit Tests Time (sec) Branch Coverage Mutation Score

1 13 0.8 70% 40.0%

2 24 2.9 100% 72.0%

3 33 6.0 100% 76.0%

4 41 11.9 100% 86.7%

5 49 18.3 100% 86.7%

6 57 27.5 100% 86.7%

7 65 43.4 100% 86.7%

8 73 71.5 100% 86.7%

65

In Table 3 we show the results for CDLL using the white-box strategy with FCI

(fully conservative class invariants). It reaches the 100% branch coverage with a scope

of only two nodes. The mutation score reaches its maximum (86.7%) when the node limit

is four.

Table 4

Exhaustive White-box statistics for Circular doubly linked list

Node Limit RepOK structures Tests Time (sec) Branch Coverage Mutation Score

1 2 13 0.5 70% 40%

2 3 24 1.1 100% 72%

3 4 38 2.0 100% 76%

4 5 55 3.2 100% 86.7%

5 6 75 4.6 100% 86.7%

6 7 98 6.3 100% 86.7%

7 8 124 8.3 100% 86.7%

8 9 153 10.8 100% 86.7%

 In Table 4 we show the results for CDLL using the exhaustive white-box strategy.

Our novel approach shows the same results of branch coverage and mutation score as the

white-box approach.

5.1.1. Discussion

 The results show that the black box approach is faster but lacks branch coverage

and mutation score. On the other side, the white box approach using FCI and the

exhaustive white-box achieve the same branch coverage and mutation score for the same

66

scopes. The second one takes considerably less time to generate the tests, but it produces

a bigger suite.

5.2. Binary search tree

Figure 40

Binary search tree definition

:

Figure 40 shows the definition of the classes that implement the data structure.

We took the implementation from an open-source repository [19]. We generated test for

the following methods:

● insert(self, value: int): Inserts a new node in the tree with the value "value".

● delete_value(self, value: int): Deletes a node in the tree with the value "value" if

it exists.

● find(self, value: int): It searches for a node with the value "value" and returns it

if it exists.

● height(self): Calculates and returns the height of the tree.

67

Table 5

Black-box statistics for binary search tree

Node Limit RepOK structures Tests Time (secs) Branch Coverage Mutation Score

1 2 14 0.8 67% 57.5%

2 4 40 3.2 88% 78.1%

3 9 120 11.2 99% 93.2%

4 23 386 41.2 100% 94.5%

5 65 1310 185.4 100% 94.5%

6 197 4610 535.9 100% 94.5%

 In Table 5 we show the results for BST using the black-box strategy. It achieves

the higher branch coverage (100%) and mutation score (94.5%) with a scope of four

nodes.

Table 6

White-box statistics for Binary search tree

Node Limit Tests Time (sec) Branch Coverage Mutation Score

1 14 2.5 67% 57.5%

2 35 20.1 88% 78.1%

3 88 148.6 99% 93.2%

4 184 2590.3 100% 94.5%

In Table 6 we show the results for BST using the white-box strategy with FCI.

With a scope of 4 nodes, it achieves a 100% of branch coverage and a 94.5% of mutation

score. However, as higher the scope, the execution time grows considerably faster. It

cannot reach higher scopes because of timeout (> 1 hour).

68

Table 7

Exhaustive White-box statistics for Binary search tree

Node Limit RepOK structures Tests Time (sec) Branch Coverage Mutation Score

1 2 14 0.8 67% 57.5%

2 4 46 3.7 88% 78.1%

3 9 156 15.6 99% 93.2%

4 23 547 61.3 100% 94.5%

5 65 1951 240.1 100% 94.5%

6 197 7058 963.0 100% 94.5%

 In Table 7 we show the results for BST using the exhaustive white-box strategy.

It achieves a branch coverage of 100% and a mutation score of 94.5% with a scope of

four nodes.

5.2.1. Discussion

 In this study case, the three strategies achieve a branch coverage of 100% and a

mutation score of 94.5%. The execution time of the white-box approach using FCI grows

much faster than the others; it takes over 2500 seconds to generate the test suite for a four

node scope. Nonetheless, the size of the test suite generated by the white-box technique

is smaller and achieves the same coverage and mutation score than the others.

69

5.3. AVL

Figure 41

AVL definition

Figure 41 shows the definition of the classes that implements the data structure.

We took the implementation from an open-source repository [19]. Our tool has found a

bug in the method that deletes a node from the tree. For this reason, we excluded it from

the measurement. This bug causes some tests to fail and thus, mutmut could not calculate

mutation score (as soon as a test fails, it stops calculating mutation score). Therefore, we

generated test for the following methods:

● insert(self, value: int): Inserts a new node on the tree with the value "value".

● find(self, value: int): Searches for a node with the value "value" and returns it if

exists.

● height(self): Calculates and returns the height of the tree.

70

Table 8

Black-box statistics for AVL

Node Limit RepOK structures Tests Time (secs) Branch Coverage Mutation Score

1 2 10 0.7 56% 37.0%

2 4 28 2.6 85% 73.2%

3 5 39 6.0 85% 73.2%

4 9 91 16.3 90% 80.6%

5 15 181 48.5 92% 88.9%

6 19 249 120.4 92% 88.9%

 In Table 8, we show the results for AVL using the black-box strategy. It achieves

a maximum branch coverage of 92% and mutation score of 88.9%. It reaches these

bounds with a scope of five nodes.

Table 9

White-box statistics for AVL

Node Limit Tests Time (sec) Branch Coverage Mutation Score

1 11 2.0 56% 37.0%

2 30 106.3 94% 85.2%

 In Table 9, we show the results for AVL using the white-box strategy (with FCI).

It only reaches a scope of two nodes because with higher scopes it exceeds the time limit

(> one hour). With only two nodes as scope, it reaches a branch coverage of 94% and a

mutation score of 85.2%.

71

Table 10

Exhaustive white-box statistics for AVL

Node Limit RepOK structures Tests Time (sec) Branch Coverage Mutation Score

1 2 10 0.7 56% 37.0%

2 4 32 3.5 94% 85.2%

3 5 47 7.6 94% 86.1%

4 9 123 23.0 97% 87.0%

5 15 259 58.8 99% 94.4%

6 19 367 187.3 99% 94.4%

 In Table 10, we show the results for AVL using the exhaustive white-box strategy.

The maximum branch coverage and mutation score are 99% and 94.4%, respectively.

5.3.1. Discussion

 In this study case, the exhaustive white-box strategy achieves the higher branch

coverage and mutation score. The black-box approach performs faster, but it cannot cover

some parts of the code, and thus achieves a lower mutation score. The time to generate

the test suite using the white-box approach with FCI is much higher than the others,

reaching a scope of only two nodes. Higher scopes cause this last strategy to exceed the

time limit, and thus it cannot cover parts of the code that require larger inputs.

5.3.2. A Bug Found

 As we said before, PySEAT finds a bug in this AVL implementation [19]. The

error occurs during some cases of node deletion. Apparently, after the deletion of a node

72

in the tree, the height of some nodes is not updated correctly, causing this field to be

inconsistent with the rest of the structure. PySEAT finds the bug when exploring the

method "delete_value" using a scope of four or higher. For this reason, the exhaustive

white-box and black-box can find it, but the pure white-box strategy cannot (it only runs

up to a scope of two nodes). Figure 42 shows one of the PySEAT's test cases that reveals

the error.

 The test fails on line 31, when it checks the class invariant after the execution of

the "delete_value" method. Here, the class invariant does not hold because the height of

the root is not properly actualized after the deletion. The regression assertion of line 35,

automatically generated from PySEAT, shows that the current behavior is wrong; it

expects the root's height value to be 3, while it should expect to be two.

73

Figure 42

Test that reveals a bug in an AVL implementation

Note. PySEAT's test that reveals a bug on the delete_value method from the AVL implementation

[19]

5.4. PEF vs PySEAT

 First, it's important to have a clear understanding of the difference between both

tools. PEF is a verification tool, it executes the target program using symbolic execution

and checks if the behavior is the expected. PEF does not generate test cases and does not

support complex data structures (structures containing aliasing constraints between

objects, like a doubly linked list). On the other hand, PySEAT explores the target using

generalized symbolic execution. It analyzes Python programs and checks whether the

execution of methods satisfy the class invariant. It also generates the test cases for the

74

explored paths of the SUT. If it finds out that a method violates the class invariant, it will

generate a test case that reproduces the error. For these reasons, we contrast the

performance of both tools in two cases. On one side, we use a simple user-defined

structure, a singly linked list. On the other side, we use a more complex data structure, a

binary search tree with parent references.

5.4.1. Singly Linked List

Figure 43

Singly linked list definition

Figure 43 shows the definition of the classes that implement the data structure. We

compared both tools over the following methods:

● is_sorted(self): Returns true if the list is in strictly ascending order. False

otherwise.

● swap_node(self): Swaps the first two nodes of the list if they are not in order.

● delete(self, elem: int): Deletes the first node on the list with the value "elem".

● append(self, elem: int): Inserts a node with the value "elem" at the end of the list.

● prepend(self, elem: int): Inserts a node with the value "elem" at the beginning of

the list.

75

Table 11 presents the results we get from the execution of both tools over this

case. PEF generates inputs up to 9 nodes, so to get equality of conditions, we use the

parameter max_nodes = 9 for the PySEAT execution. As PEF doesn't generate test cases,

we can't measure mutation score. For the same reason, we measure branch coverage of

PEF's execution, while on PySEAT we measure the coverage of the test suite it generates.

Table 11

Execution results of PEF and PySEAT over an acyclic singly linked list

Tool Time (seconds) Branch Coverage Generates test cases?

PEF 28.3 100% NO

PySEAT

(max_nodes = 9)

6.7 100% YES: 139 test cases

 There is a considerable difference in the execution time; PySEAT takes only 6.7

seconds, and it also writes test cases to disk. The branch coverage is 100% for both tools.

5.4.2. Binary Search Tree

Table 12

Execution results of PEF and PySEAT over a binary search tree

Tool Time (seconds) Branch Coverage Generates test cases?

PEF 556 0% NO

PySEAT

(max_nodes = 4)

61.3 100% YES: 547 test cases

76

We use the same implementation of section 4.2. The results of PySEAT are the

same that table 7 shows. For a scope of only four nodes, it achieves a 100% of branch

coverage and generates the corresponding test cases. On the other side, PEF couldn't

explore any path of the target. PEF cannot build valid instances of a binary search tree

with parent references. Thus, it cannot explore any path of the methods under test. The

PEF algorithm to create heap allocated structures described in chapter one cannot handle

complex data structures. For cases like this one, all the structures it creates are invalid

because PEF cannot satisfy the constraint that a child in the tree must point to the parent

in the "parent" field. For instance, figure 44 shows an example of an invalid instance that

PEF creates for the binary search tree. As PEF always initializes fields to new nodes, the

parent field of nodes never points to the actual parent.

Figure 44

Invalid BST instance created by PEF

77

Chapter 6

Related work

 This work is based on PEF [3], an existing symbolic execution engine for Python

programs. PEF allows the symbolic execution of Python independent functions and uses

a contract system to specify programs preconditions and postconditions. PEF does not

generate test cases. As shown in our experiments (Section 5.4.2), it does not work very

well with heap-allocated data structures containing aliasing. Another Python symbolic

execution tool is PyExZ3 [6]. The tool performs symbolic execution of Python programs

that use only primitive data types. It neither generates test cases and, as PEF and PySEAT,

it uses the Z3 constraint solver [12].

PEX [11] is an efficient automated test case generator for the .NET platform based

also on symbolic execution using Z3 constraint solver. Nevertheless, PEX does not

generate inputs automatically for non-primitive data types. For complex heap-allocated

data structures, PEX requires the user to provide object factories: specific inputs that will

be used during the symbolic execution of the code to generate tests.

Korat is a technique for automatic test input generation: given a predicate and a

bound on the size of its inputs, Korat generates all the bounded inputs for which the

predicate returns true. Korat exhaustively explores the bounded input space of the

predicate but does so efficiently by monitoring the predicate's executions and pruning

large portions of the search space [7]. Unlike korat, PySEAT's exhaustive white-box

strategy is exhaustive only regarding the reference fields but not regarding primitive ones;

78

after generating all the bounded "shapes" of the structure, it uses symbolic execution to

generate values for the primitive fields of the shape in order to cover branches in the

SUT's code.

79

Chapter 7

Conclusion

In this work, we presented and developed a novel automated test generation tool

for Python programs, called PySEAT. It generates test cases for implementations of

complex objects (i.e. data structures containing aliasing) without user intervention; the

process of the test suite generation is fully transparent to the user. The hearth of our tool

is a novel engine implementing the generalized symbolic execution technique [1]. As far

as we know, this is the first tool implementing this approach for the Python language.

 We have implemented three input generation strategies: one based on white-box

testing, another based on black-box testing, and a third variant based on the previous two

strategies. The original white-box approach [2] requires that the user implements a

particular type of class invariant to work, conservative class invariants. To the best of our

knowledge, there is no sound algorithm to automate the creation of such class invariants

from any given class invariant. Therefore, to automate this process, preventing the user

of implementing a conservative class invariant and allowing the tool to work with any

Python class invariant (also called repOk), we used what we call fully conservative class

invariants (FCI) in the PySEAT's white-box implementation. The costs in terms of

efficiency of using FCI were very high. The black-box input generation strategy [2] had

better performance, but usually lacked branch coverage of the code. To solve the

problems of both black-box approach and white-box approach with FCI, we implemented

a third strategy, the exhaustive white-box.

80

We have assessed the three strategies with study cases taken from open source

repositories. The results show that the black-box approach works faster than the others,

but in several cases it lacks code coverage because it does not take into account the

structure of the source code, decreasing the likelihood of finding errors. The white-box

approach with FCI achieves high code coverage and mutation score with a smaller test

suite than the others. The major problem it has is that it is inefficient. For complex data

structures, its execution time may be prohibitive. It only performs well on very little

inputs and thus, the likelihood of finding error decreases when more complex inputs are

needed. The primary cause of its inefficiency is the use of fully conservative invariants to

prune the spurious structures that lazy initialization generates. Frequently, the fully

conservative invariant cannot filter all invalid instances, and this generates several

problems: Infinite loops and stack overflows that the engine must handle, useless

computations on spurious instances, and the need of a mechanism to remove invalid

instances before writing test cases. Handling these problems, especially the last, is a very

slow process. The exhaustive white-box approach solves all these problems by dealing

directly with the root cause: The use of fully conservative invariants. Instead, the

exhaustive white-box approach performs GSE of the class invariant to solve structural

constraints before exploring the target method. It is similar to the black-box approach, but

there is a key difference: It uses the partially symbolic instances that result from the

exploration of the class invariant to perform traditional symbolic execution of the target

method. The results show that the exhaustive white-box approach achieves the same

branch coverage and mutation score than the white-box strategy with FCI, with

considerably lower execution time but with a considerably bigger test suite. The size of

the test suite that the exhaustive white-box technique generates is its major downside; it

generates test suites that are too big, with multiple test cases exercising the same paths of

81

the code. On the other hand, the white-box strategy is ideal in this aspect, the test suites

it creates are smaller and each test case covers exactly one path in the GSE tree of the

program. As the major problem of PySEAT's white-box implementation is the use of FCI

to validate lazy initialization steps, finding a more efficient mechanism of validating lazy

initialization steps can cause the white-box technique to be a better alternative than the

exhaustive white-box approach.

We also compared PySEAT's exhaustive white-box strategy with PEF (Section

5.4). PEF is only a verification tool for Python programs (it doesn't generate test cases).

The results show that PEF cannot analyze programs using more complex data structures,

like binary search trees with parent references. Because of the way it works, it is expected

that PEF would not work on more complex structures like AVLs, Red-Black Trees, etc.

Also, on acyclic singly linked lists (a simple heap-allocated structure that does not contain

aliasing), PySEAT has shown better performance than PEF.

PySEAT uses the exhaustive white-box technique by default. We have found a

bug with PySEAT using this strategy in the following open-source AVL implementation

[19]. The error occurs during some cases of node deletion. After deletion it doesn't update

correctly the height of some nodes, causing this field to be inconsistent with the rest of

the structure. PySEAT finds the bug when exploring the method "delete_value" using a

node's limit of four or higher.

7.1. Future work

 There are many features that could be interesting to add to PySEAT in future

works:

82

• Support for more primitive types: The tool currently supports only integers and

booleans primitive types. Adding other types such as strings and arrays would allow

PySEAT to support more Python programs.

• Support for independent functions: Currently, PySEAT only supports test

generation for methods from a class.

• Support method preconditions and postconditions: It's possible to add a contract

system to support method preconditions and postconditions. PySEAT could take

advantage of the information of the precondition to avoid unnecessary explorations.

The tool also can use the information of postconditions to create test oracles.

• Usage of the methods from the API of a class to create the test input in test cases:

Currently, PySEAT test cases create the input using only constructors and field

assignments. This causes the test case to be longer and harder to understand. A nice

feature would be to PySEAT to write test cases that create the input using the methods

from the API of the class. This would allow the test cases to be shorter and more

readable.

• Replace fully conservative invariants in white-box technique: To avoid the user

having the responsibility of creating a conservative invariant, PySEAT's white-box

technique allows the use of any kind of class invariant and runs it in a fully

conservative way to validate lazy initializations. This causes the procedure to be very

inefficient. Finding a more efficient mechanism of validating lazy initialization steps

can cause the white-box technique to be a better alternative than the exhaustive white-

box approach because it generates smaller test suites that achieve the same code

coverage and mutation score.

83

• Concurrent executions: PySEAT currently performs a sequential exploration of the

target program. By exploring the different program paths concurrently, the execution

time can be reduced drastically.

84

References

[1] Khurshid S., PĂsĂreanu C.S., Visser W. (2003) Generalized Symbolic Execution

for Model Checking and Testing. In: Garavel H., Hatcliff J. (eds) Tools and

Algorithms for the Construction and Analysis of Systems. TACAS 2003. Lecture

Notes in Computer Science, vol 2619. Springer, Berlin, Heidelberg.

[2] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. 2004. Test input

generation with java PathFinder. SIGSOFT Softw. Eng. Notes 29, 4 (July 2004),

97–107.

[3] Damián Barsotti, Andrés M. Bordese, and Tomás Hayes. (2018) PEF: Python

Error Finder. Electronic Notes in Theoretical Computer Science, Volume 339,

2018, Pages 21-41.

[4] Alessandro Bruni, Tim Disney, Cormac Flanagan. (2011). A Peer Architecture for

Lightweight Symbolic Execution. University of California, Santa Cruz.

[5] N. Rosner, J. Geldenhuys, N. M. Aguirre, W. Visser and M. F. Frias, "BLISS:

Improved Symbolic Execution by Bounded Lazy Initialization with SAT

Support", in IEEE Transactions on Software Engineering, vol. 41, no. 7, pp. 639-

660, 1 July 2015.

[6] Thomas Ball and Jakub Daniel. (2015). Deconstructing Dynamic Symbolic

Execution. Proceedings of the Sixth Conference on Uncertainty in Artificial

Intelligence, Boston, MA, January 2015.

85

[7] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on

Java predicates. In Proc. International Symposium on Software Testing and

Analysis (ISSTA), July 2002.

[8] James C. King. (1976). Symbolic execution and program testing.

Communications of the ACM, volume 19, númber 7, pages 385–394.

[9] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: feedback-directed random

testing for Java. In Companion to the 22nd ACM SIGPLAN conference on Object-

oriented programming systems and applications companion (OOPSLA '07).

Association for Computing Machinery, New York, NY, USA, 815–816.

DOI:https://doi.org/10.1145/1297846.1297902

[10] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation

for object-oriented software. In Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of software

engineering (ESEC/FSE '11). Association for Computing Machinery, New York,

NY, USA, 416–419. DOI:https://doi.org/10.1145/2025113.2025179

[11] Tillmann, Nikolai & Halleux, Jonathan. (2008). Pex-white box test generation for

.NET. 134-153. 10.1007/978-3-540-79124-9_10.

[12] Leonardo Mendonça de Moura, Nikolaj Bjørner: Z3: An Efficient SMT Solver.

TACAS 2008: 337-340.

[13] Cristian Cadar, Daniel Dunbar, Dawson R. Engler: KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems Programs.

OSDI 2008: 209-224.

86

[14] P. Ammann, J. Offutt. Introduction to Software Testing. 2nd. Edition, Cambridge

University Press, 2017.

[15] Model Checking Programs". W. Visser, K. Havelund, G. Brat, S. Park and F.

Lerda. Automated Software Engineering Journal.Volume 10, Number 2, April

2003.

[16] Godefroid, P., Klarlund, N., Sen, K. DART: directed automated random testing.

Programming Language Design and Implementation, páginas 213–223. ACM

(2005).

[17] Python Documentation. https://www.python.org/doc/

[18] Python properties. https://docs.python.org/3/howto/descriptor.html#properties

[19] Repository of AVL and BST study cases.

https://github.com/bfaure/Python3_Data_Structures

[20] Ariane's 5 explosion.

http://www.users.math.umn.edu/~arnold/disasters/ariane5rep.html

[21] NASA's Mars climate orbiter.

https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf

[22] Coverage. https://pypi.org/project/coverage/

[23] Mutpy. https://pypi.org/project/MutPy/

87

Appendix A

Usage of PySEAT

 In this section we explain how to use the tool, the parameters it takes, where it

saves the output, and the existing tools that PySEAT uses to measure branch coverage

and mutation score.

A.1. Installation

First, clone this repository to your local machine using git:

 git clone https://github.com/JuanmaCopia/PySEAT

Second, create and activate a virtual environment on the project folder:

 cd PySEAT/
 python3 -m venv env
 source env/bin/activate

Finally, Install the requirements:

 sudo pip install -r requirements

After those commands, PySEAT should be ready to run. To verify everything works

properly, we can run the test cases with:

 python run_tests.py

88

A.2. Parameters

PySEAT takes as argument three obligatory parameters:

Table 12

PySEAT's required parameters

Name Type Function

filepath String Indicates the path to the python module that contains the SUT

class_name String Indicates the name of the class under test.

methods String Indicates the methods to test from the class.

We can also provide some optional parameters to the tool. When they are not

provided, the default value is used. The following table describes all parameters, showing

its type and default value:

Table 13

PySEAT's optional parameters

Name Type Default value Function

max_nodes Int 5

Limits the maximum amount of "nodes" or

"new instances" that PySEAT can use to

generate instances of the class under test.

max_depth Int 10

Limits the maximum depth of the

exploration tree regarding conditional

branch points. (PySEAT prunes paths that

overpass this value).

timeout Int 5
If the exploration of a SUT's path takes

longer than this value, PySEAT prunes it.

coverage Bool False
Measures branch coverage of the test suite

it generates using the tool coverage.py.

mutation Bool False
Measures mutation score of the test suite it

generates using mutpy.

quiet Bool False Displays less output.

run_tests Bool True Runs the test suite it generates using pytest.

test_comments Bool True

Creates a comment on each test case

representing the input and the output. It uses

the method __repr__ of each class.

89

blackbox Bool False

When it is true, PySEAT generates test

cases using the black-box approach.

Otherwise, it use Exhaustive white-box as

default.

A.3. Execution

 The easiest way to run PySEAT is through a configuration file. We can add a new

section to the default configuration file in PySEAT/config.ini, describing the parameters

we described in the previous section. We can also provide a custom .ini file.

Figure 46

PySEAT's configuration file example

Figure 46 shows an example of a configuration file. It has two sections: LinkedList

and CircularDoublyLinkedList. Each section describes a class under test, and PySEAT

will generate the test suite for each of those classes. The default section contains the

90

default values and other sections can override them. Note that the "LinkedList" section

overrides the max_nodes parameter.

To run PySEAT using the default config.ini file use the -c option:

 python <path-to PySEAT/__main__.py> -c

We can also execute PySEAT as a module:

 python -m PySEAT -c

To provide a custom configuration file, just add the path after the -c option using any of

the previous ways:

 python <path-to PySEAT/__main__.py> -c <path-to .ini file>

We can also pass the parameters to PySEAT through the command line arguments:

 python <path-to PySEAT/__main__.py> <path-module-to-test.py>
<class-name> -m <methods-names> [OPTIONAL ARG. 1] [OPTIONAL ARG. 2] …

A.3.1. Measurement of branch coverage and mutation score

 PySEAT uses a tool called coverage [22] to measure branch coverage. To measure

mutation score, it uses a tool called mutpy [23]. These measurements are disabled by

default but we can enable them by setting the parameters "mutation" and "coverage" to

true.

