
Precise Lazy Initialization for Programs with
Complex Heap Inputs

Juan Manuel Copia
IMDEA Software Institute and

Universidad Politécnica de Madrid
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Abstract—Lazy initialization enables symbolic execution for
programs with heap-allocated inputs. It starts the program
execution with a symbolic heap and concretizes it on demand
as the program accesses it. However, the main challenge of
lazy initialization is efficiently determining whether the current
symbolic heap becomes infeasible with respect to the program’s
precondition. Pruning infeasible heaps is crucial to avoid signif-
icant runtime overhead and false alarms.

In this paper, we propose PLI (Precise Lazy Initialization), an
approach that precisely decides whether there exists a concretiza-
tion of the current symbolic heap that satisfies the program’s
precondition. Unlike previous approaches, PLI also takes into
account the constraints in the path condition to determine the
feasibility of the current symbolic heap. Furthermore, PLI allows
preconditions to be specified as standard operational predicates
for concrete structures, eliminating the need for additional
specifications tailored to symbolic heaps.

In our empirical evaluation, PLI demonstrated comparable
performance to existing lazy approaches while reducing the
number of explored paths by 43% (all infeasible) and eliminating
all false alarms in the analysis. Moreover, PLI exhibited faster ex-
ecution and better scalability compared to “eager” (enumeration-
based) approaches, achieving a 67% reduction in explored paths.

I. INTRODUCTION

Symbolic Execution (SE) [1] is a widely recognized tech-
nique for program analysis, with successful applications in
software verification [2], [3] and automated test input gener-
ation [4]–[9], among others [10], [11]. It involves systemati-
cally exploring different paths in a target program using sym-
bolic inputs instead of concrete values. When SE encounters a
decision point in the program, such as a conditional statement
or loop termination condition, the execution branches into two
paths: one for the true case and another for the false case.
These branches introduce constraints on the inputs, which are
accumulated along the execution path, forming what is known
as path condition. Intuitively, the path condition represents the
set of constraints that the inputs must satisfy for the program
to follow a particular path. As these constraints typically
involve arithmetic and logical properties, their satisfiability

can be often be solved resorting to SMT solvers [12]. An
unsatisfiable path condition implies that no concrete input can
exercise the path, which can be pruned from further analysis.
Pruning infeasible paths is crucial for enhancing the speed and
scalability of symbolic execution.

Modern programs frequently operate with heap-allocated
structures, such as library collections or user-defined classes.
These structures often need to satisfy specific constraints,
whose satisfiability cannot be straightforwardly decided by
SMT solvers. For instance, binary search trees have constraints
related to the structure of the heap-allocated objects, particu-
larly their reference-typed fields, such as acyclicity. Addition-
ally, these structures often have constraints pertaining to their
primitive-typed fields, such as the requirement to maintain
sorted keys. Symbolic execution of such programs poses a
significant challenge. There are two main approaches to enable
symbolic execution in such scenarios. On one hand, eager
approaches enumerate all feasible concrete heap configurations
and use them as inputs for symbolic execution. However, this
method can be inefficient and computationally expensive due
to the potentially large number of structures that need to be
considered. On the other hand, the Lazy Initialization (LI) [2]
approach starts the symbolic execution with a fully symbolic
heap, and the concretization of the symbolic fields is deferred
until they are accessed during program execution. This ap-
proach allows LI to collapse multiple concrete executions into
a single symbolic path, reducing the overall number of paths
that need to be explored. In order to ensure finite exploration,
LI requires an upper bound on the number of objects that can
be created, known as the scope.

Similarly to the constraints gathered in the path condition,
each lazy branch introduces a new constraint on the symbolic
heap by assigning a specific value to the field. Some assign-
ments may lead to an infeasible symbolic heap with respect
to the program precondition. For instance, introducing a cycle
in a tree. Branches with infeasible symbolic heaps can be



safely discarded, so that symbolic execution can focus solely
on feasible and meaningful program states.

Different techniques have been developed to tackle the
feasibility analysis of symbolic heaps. Some of these ap-
proaches require users to provide additional specifications
using specialized languages capable of expressing constraints
over symbolic structures [2], [6], [13]. However, this places
an additional burden on users, demanding extra effort and
introducing the possibility of errors in the specifications. Other
approaches, such as LISSA [14], rely on standard operational
predicates over concrete structures. However, they address
the feasibility of the symbolic heap separately from the path
condition. As a result, they fall short in detecting infeasible
branches where both the path condition and the heap are
independently satisfiable but not when considered together.
This limitation leads to the exploration of infeasible symbolic
states, which are prone to generate false alarms during the
analysis (see Section II).

We introduce a novel symbolic execution approach called
Precise Lazy Initialization (PLI) to address this issue. The core
of PLI is a novel solver capable of determining the satisfiability
of symbolic heaps with respect to a specification and the
scopes of the analysis. The solver takes into account the
interplay between the path condition and the heap constraints,
and accurately identifies symbolic heaps that are infeasible
with respect to the specification. In this case, PLI can safely
prune the current branch from further exploration, reducing
unnecessary analysis overhead and eliminating false alarms.
The specification must be expressed in terms of an operational
predicate pre, which is a conjunction of two predicates:
pre = preP ∧ preH . preH describes the constraints about
the shape of the heap (e.g., acyclicity), while preP specifies
constraints over primitive-typed fields of the structure (e.g.,
ordered keys). Importantly, pre is expressed in the same
programming language as the analyzed code. This eliminates
the need for specialized languages, leveraging the familiarity
and existing knowledge of the target programming language.
Is worth to mention that specifications are often expressed as
a conjunction of several properties, and that there are other
techniques that leverage this idea [15], [16].

To determine the satisfiability of the current symbolic heap
and path condition, the PLI solver employs a two-step process.
Firstly, it conducts a bounded exhaustive search within the
provided scopes to find a concretization of the symbolic heap
satisfying preH . The result is a candidate heap satisfying
preH , with all its reference fields concrete and possibly some
primitive fields set to symbolic values. Secondly, it performs
a symbolic execution of the preP predicate using as inputs
the candidate heap and the path condition. This step tries to
find out concrete values for the remaining primitive symbolic
fields of the candidate, such that it satisfies preP and the path
condition. If this procedure succeeds, it finds a witness of
the satisfiability of the symbolic heap and the path condition.
Otherwise, the path is deemed unsatisfiable.

We experimentally assessed PLI against related techniques.
The results demonstrate that PLI performs on par with existing

lazy approaches while significantly reducing the number of
explored paths by 43% in average. PLI effectively eliminates
all infeasible paths explored by the related lazy techniques,
leading to the removal of all false alarms. In comparison
to traditional “eager” (enumeration-based) approaches, PLI
exhibits better performance and scalability; it achieves a 67%
reduction in the number of explored paths in average. This
improvement is attributed to the over-concretization of heap
inputs typically performed by eager approaches. Additionally,
PLI successfully identified a known bug in a Binomial Heap
implementation. This bug required the analysis to scale up to
a scope of 13 nodes for the defect to manifest, which other
techniques were not able to reach.

In summary, this paper makes the following contributions:
• A novel solver that utilizes an operational predicate as

a specification to determine the satisfiability of symbolic
states involving a symbolic heap and a path condition.

• The PLI lazy symbolic execution approach that utilizes
the aforementioned solver to eliminate paths containing
infeasible symbolic states. Our implementation is built on
top of the Symbolic Pathfinder tool [17].

• An experimental assessment comparing PLI with related
approaches, and demonstrating that PLI exhibits com-
parable performance to existing lazy approaches, but
discards all infeasible paths and yields no false alarms.

II. MOTIVATING EXAMPLE

We now present an example that emphasizes the conse-
quences of separately solving the symbolic heap and the
path condition in lazy initialization, as occurs in LISSA [14].
Fig. 1 illustrates the Schedule class, taken from the SIR
benchmark [18], which implements a scheduler of processes
(Job) with three priority queues stored in the pQueues array.
The highest priority queue is represented by pQueues[3],
followed by pQueues[2] and pQueues[1] for the next
and lowest priorities, respectively. Particularly, the method
finishAllProcesses() is in charge of terminating all
scheduled processes. It executes a loop that, at each itera-
tion, terminates the current running process curProc and
schedules the next process with the highest priority. The
precondition of finishAllProcesses() establishes that
the receiver object, an instance of Schedule, must satisfy
the following properties.
• sched-1 (heap constraint): The pQueues array must not

be null.
• sched-2 (heap constraint): pQueues[0] must always be

null.
• sched-3 (heap constraint): the priority queues
pQueues[1], pQueues[2], and pQueues[3]
are non-nullable doubly linked lists (List).

• sched-4 (primitive constraint): The memCount field of
List holds the number of processes in each list.

Fig. 2 depicts a partial view of the symbolic execution tree
explored when using lazy initialization. Each node in the tree
corresponds to a symbolic state. The initial symbolic state



1 class Schedule {
2
3 class List {
4 Job first;
5 Job last;
6 int memCount; // # processes in the list
7 }
8
9 class Job {

10 Job next;
11 Job prev;
12 int val;
13 int priority;
14 }
15
16 final static int MAXPRIO = 3;
17
18 int numProcesses; // # running processes
19 Job curProc; // current running process
20 List[] pQueues = new List[MAXPRIO + 1];
21
22 public void finishAllProcesses() {
23 for(int i = 0; i < numProcesses; i++) {
24 finishProcess();
25 }
26 }
27
28 public void finishProcess() {
29 schedule();
30 if(curProc != null) {
31 curProc = null;
32 numProcesses--;
33 }
34 }
35
36 void schedule() {
37 curProc = null;
38 for(int i = MAXPRIO; i > 0; i--) {
39 if(pQueues[i].memCount > 0) {
40 curProc = pQueues[i].first;
41 pQueues[i] = delEle(pQueues[i], curProc);
42 return;
43 }
44 }
45 }
46
47 List delEle(List dList, Job dEle) {
48 if(dList == null || dEle == null)
49 return null;
50 ... // the method continues
51 }
52 }

Fig. 1. finishAllProcesses method from Schedule

of the analysis comprises an empty path condition (PC) and
an instance of Schedule with symbolic fields. To represent
existing lazy approaches, we assume the presence of an oracle
capable of deciding the feasibility of a symbolic heap with
respect to the program precondition.

The first decision point in the symbolic execution
arises at line 23 within the condition of the loop: i <
numProcesses. Taking the true branch, since i = 0, the
constraint 0 < N is added to the path condition, where N rep-
resents the symbolic value associated with numProcesses.
The execution proceeds until line 39, where it accesses the
field pQueues, which contains a symbolic value. In lazy
initialization, whenever the program under analysis accesses
a symbolic field of reference type T, the execution branches
for each possible initialization of that field: (1) to the special
value null; (2) to each instance of type T allocated in
previous lazy initializations; (3) to a new instance of type

Clouds in the picture represent symbolic reference values, while upper case letters
represent symbolic primitive values.

Fig. 2. Symbolic execution tree of finishAllProcesses

T with symbolic fields. We will refer to these ramifications
as lazy branches. For pQueues the execution generates two
lazy branches: one initializing the array as null and the
other initializing it with a new array populated with symbolic
values. The length of the array is determined by the bounds
specified by the user, which in this case is 4. However, the
null initialization violates constraint sched-1, and therefore
the oracle discards it. Continuing with the feasible branch,
the analysis encounters another lazy branch point on the
same line, specifically for the initialization of index 3 of the
array (i = 3). Let us consider the branch that initializes
pQueues[3] as a new List instance with symbolic fields,
which satisfies constraint sched-3. Next, a branch occurs on the
decision point pQueues[3].memCount > 0 in line 39.
Following the true branch, the constraint M > 0 is added to
the path condition, where M represents the symbolic value
associated with the memCount field of the list. Notice that
these approaches treat all the primitive fields of the structures
as symbolic. Finally, another lazy branch assigns null to the
field first of the list when accessed at line 40. Without



considering the path condition, this initialization is feasible
for pQueues[3]. However, when considering the constraint
M > 0 from the path condition in conjunction with sched-4,
the field first cannot be null; the conjunction indicates
the list must have at least one process.

The execution of this infeasible path continues with the
invocation of method delEle() at line 41, with a null Job
as second parameter. This causes the method to return and
assign null to pQueues[3]. In the next iteration of the loop
in line 23, when schedule() is called with this infeasible
symbolic structure, a NullPointerException is thrown
at line 39 when trying to access the memCount field of
pQueues[3], which is set to null. This exception is a false
alarm. The analysis reports a bug where there is none. False
alarms significantly impact the usability of program analysis
techniques as they require manual inspection by users for their
dismissal. By evaluating the feasibility of the path condition
and the heap together, PLI efficiently identifies and discards
infeasible branches, and avoids false alarms like this one.

III. THE PRECISE LAZY INITIALIZATION APPROACH

In this section we present Precise Lazy Initialization (PLI),
a novel symbolic execution technique based on lazy initializa-
tion for programs manipulating complex heap-allocated inputs.

A. Specifying Preconditions for PLI

Fig. 3 shows the precondition pre as an operational predi-
cate for the Schedule case study. The idea is that preH must
check all the heap related constraints. Notice that the heap
constraints sched-1 and sched-2 from Section II are checked at
line 6, and sched-3 in method checkList at line 19. Priority
queues are implemented with doubly-linked lists, thus method
isDoublyLinkedList (not included for space reasons)
checks that the structural properties of doubly-linked lists are
satisfied. On the other hand, preP includes constraints on
primitive-typed fields, such as that the priority field of the
processes matches the index of the priority queue they belong
to (line 39), and sched-4 from Section II (line 44). The reason
for requiring separated preconditions is that PLI delegates the
solving of preH to SymSolve, as it solves heap constraints
very efficiently (see Section III-B). However, SymSolve usually
does not perform well for primitive-typed constraints, given
that primitive fields usually can have a large range of values
that SymSolve would resolve in a bounded-exhaustive manner.
Hence, PLI resorts to symbolic execution of preP to solve
primitive-typed constraints (see Section III-C).

Currently, determining which constraints to include in preH
and preP is a task for the user. For PLI to work best we
recommend following the simple guidelines discussed below.
• preH includes all constraints over reference-typed fields

and all constraints over primitive-typed fields that are
strongly related to the shape of the heap (in our exper-
iments, only size and balance constraints) and that can
assume a small set of values (booleans, enumerations,
small ranges of integers).

1 public boolean pre() {
2 return preH() && preP();
3 }
4
5 public boolean preH() {
6 if (pQueues == null || pQueues[0] != null)
7 return false;
8 Set<List> visitedQ = new HashSet<>();
9 Set<Job> visitedJobs = new HashSet<>();

10 for (int i = 1; i <= MAXPRIO; i++)
11 if (!checkList(pQueues[i], visitedQ, visitedJobs))
12 return false;
13 if (!checkList(blockQueue, visitedQ, visitedJobs))
14 return false;
15 return numProcesses == visitedJobs.size();
16 }
17
18 boolean checkList(List queue, Set<List> visitedQ, Set<

Job> visitedJobs) {
19 if (queue == null || !visitedQ.add(queue))
20 return false;
21 if (!isDoublyLinkedList(queue, visitedJobs))
22 return false;
23 return true;
24 }
25
26 public boolean preP() {
27 if (curProc != null && (curProc.priority < 1 ||

curProc.priority > MAXPRIO))
28 return false;
29 for (int i = 1; i <= MAXPRIO; i++)
30 if (!checkPriority(pQueues[i], i))
31 return false;
32 return checkPriorityBlockQueue();
33 }
34
35 boolean checkPriority(List prioQueue, int priority) {
36 Job current = prioQueue.first;
37 int size = 0;
38 while (current != null) {
39 if (current.priority != priority)
40 return false;
41 size++;
42 current = current.next;
43 }
44 return size == prioQueue.memCount;
45 }

Fig. 3. Operational specification for Schedule

• preP includes all the rest of the constraints over
primitive-typed fields, which are solved via SMT.

The reason for including in preH constraints over primitive
fields with a bounded set of values, when they are related to
the shape of the heap, is that it can improve the performance
of PLI. This is because those constraints reduce the amount
of candidate concretizations that SymSolve produces. For ex-
ample, the colors of nodes in red-black trees have bounded
domains (are either red or black), and checking that the tree
is correctly colored ensures the balance of the tree. Including
this constraint in preH allows SymSolve to discard many heaps
that represent imbalanced trees.

It is important to note that the soundness and completeness
of PLI can be compromised if the user wrongly includes into
preP constraints over primitive-typed fields that might assume
an unbounded set of values. For instance, a constraint stating
that keys of a tree are sorted. This would cause the fields to be
treated by SymSolve as if they were bounded. Thus, we bear
the risk of missing feasible symbolic states that require values
that are outside the provided bounds for the fields.



Algorithm 1 Precise Lazy Initialization Pseudocode
1: function NEXTHEAP(predicate, scopes, symH , initial)
2: candidate← initial
3: repeat
4: candidate← next(scopes, symH, candidate)
5: if candidate ̸= null ∧ predicate(candidate) then
6: return candidate
7: end if
8: until candidate = null
9: return null

10: end function
11:

12: function PLISOLVER(pre, scopes, symState)
13: where pre = preH ∧ preP and
14: scopes are the maximum numbers of allowed objects and
15: symState = (symH, pathCond)

16:

17: concH = NEXTHEAP(preH, scopes, symH,null)
18: while concH ̸= null do
19: primC ← getPrimitiveConstraints(concH)
20: conj ← primC ∧ pathCond
21: if SMT (conj) = SAT then
22: solutionPC ← SymbolicExec(preP, (concH, conj))
23: if solutionPC ̸= null then
24: return (concH, solutionPC)
25: end if
26: end if
27: concH = NEXTHEAP(preH, scopes, symH, concH)
28: end while
29: return null
30: end function
31:

32: class SymbolicExecutionTreeNode
33: branchType ▷ type of branch of this node: {PRIMITIVE, LAZY}
34: parent ▷ parent node in the symbolic execution tree
35: solHeap ▷ heap solution for this node
36: solPC ▷ path condition solution for this node
37: end class
38:

39: function PLIALGORITHM(pre, scopes, node, symState)
40: if node.parent ̸= null then
41: if node.branchType = PRIMITIV E then
42: if SMT (node.parent.solPC ∧ pathCond) = SAT then
43: node.solPC ← node.parent.solPC ∧ pathCond
44: node.solHeap← node.parent.solHeap
45: return True
46: end if
47: else ▷ Is a LAZY branch
48: if node.parent.solHeap is solution of symH then
49: node.solPC ← node.parent.solPC
50: node.solHeap← node.parent.solHeap
51: return True
52: end if
53: end if
54: end if
55: solution← PLISOLVER(pre, scopes, symState)
56: if solution ̸= null then
57: node.solHeap← solution.solHeap
58: node.solPC ← solution.solPC
59: return True
60: end if
61: return False
62: end function

Given the simplicity of splitting preconditions in our ex-
perimental assessment, we believe that this procedure can
be automated. Furthermore, we expect it can be done in
such a way that optimal performance in PLI is achieved. A
possible research line in this direction is the exploration of
transcoping-based techniques, similar to the one employed in
HyTeK [16]. By doing so, we would relieve the user from this
task. Exploring this possibility is part of our future work.

B. A Constraint Solver for Symbolic Heaps

SymSolve [14] is a specialized solver designed to decide
the satisfiability of symbolic heaps in relation to a provided

specification for concrete structures (such as preH) and scopes
within the data domains of these concrete structures. SymSolve
performs an efficient bounded-exhaustive exploration over
the space of concrete structures within the specified scopes.
Consequently, SymSolve produces witnesses in the form of
concrete structures that act as concretizations of the input
symbolic heap while also adhering to the specification.

The NEXTHEAP function at line 1 of Algorithm 1 out-
lines an abstraction of the behavior of SymSolve offering
crucial insights for comprehending this paper. This function
takes in several parameters: the symbolic heap denoted as
symH, the specification that needs to be fulfilled identified as
predicate, the specified scopes denoted as scopes, and
an optional initial concrete structure identified as initial.
Notably, SymSolve can resume the search process from any
specified concrete structure, as facilitated by the initial pa-
rameter. SymSolve and PLI require the typical scopes definition
for bounded-exhaustive approaches [14], [15]: the maximum
number of objects to be created for each class (also required
by lazy initialization [2]), and value ranges for primitive fields
accessed by preH . In scheduler we set a maximum of 4
objects, and [0..3] as ranges for the primitive fields.

SymSolve explores concretizations in a bounded-exhaustive
manner and in a deterministic order, guided by the order in
which predicate visits the structure’s fields. This approach
was first implemented by bounded-exhaustive test generator
Korat [15]. We assume the next function, invoked at line 4,
abstracts this procedure and simply returns the next concrete
candidate heap that satisfies the constraints of the symbolic
heap symH, which is assigned to candidate. In the case
that initial is null, the method next retrieves the first
candidate. Conversely, if initial is provided, the search
commences from the designated candidate to generate
the subsequent concrete heap, without re-exploring previous
states. This is a key feature that greatly contributes to the
efficiency of PLI’s solver. The algorithm loops over concrete
candidates in lines 3-8, until it finds a candidate satisfying
predicate (line 6) or until it exhausts the search space and
returns null in line 9.

Importantly, the search performed by SymSolve is efficient,
as it discards large portions of the state-space that contain
invalid structures. We refer the reader to LISSA’s paper for
details [14]. The main problem of SymSolve is that it cannot
reason about the program path condition. Thus, any constraint
present in the path conditions is completely ignored when
deciding feasibility of a symbolic heap (see Section II).

C. An Integrated Solver for Heap and Primitive Constraints

A pseudocode for PLI’s solver is provided in function
PLISolver of Algorithm 1. It takes as inputs the specifi-
cation pre = preH ∧ preP , the scopes for the analysis,
and a symbolic state symState, composed of the symbolic
heap (symH) and the program path condition (pathCond).

The purpose of this function is to search for a concrete
instance within the given scopes that demonstrates the
satisfiability of the symbolic state with respect to pre. The



algorithm starts at line 17, calling NEXTHEAP (SymSolve)
to search for a concretization concH of the symbolic heap
satisfying preH . If no candidate is found (line 18), then the
symbolic heap cannot satisfy preH and the entire symbolic
state can be deemed unsatisfiable, returning null at line 29.
Otherwise, all the fields that were accessed by preH will
have concrete values, and the remaining fields would remain
symbolic. In the scheduler example, all the reference-typed
fields will have concrete values. All the primitive-typed fields
will have symbolic values, except numProcesses that is
accessed by preH (line 15 of Fig. 3) and will be assigned
a concrete integer by NEXTHEAP. Continuing with the algo-
rithm, at line 19, getPrimitiveConstraints creates a
formula that is a conjunction of equalities of the form f = v,
for all primitive-typed fields f that have a concrete value v in
concH. In our scheduler example, for a concrete heap concH
with k processes, the formula would be numProcesses = k.

Next, the algorithm uses an SMT Solver to check whether
the conjunction conj of primC and the program’s path
condition pathCond is SAT (lines 20-21). This step ensures
that the concretized primitive values of the current candidate
do not conflict with the constraints of the program’s path
condition. If the conjunction is UNSAT, the solver discards the
candidate and proceeds to search for the next candidate that
satisfies preH (line 27). If conj = primC ∧ pathCond
is SAT, the algorithm employs symbolic execution of preP
to determine whether concH and conj can also satisfy
preP (line 22). For this, preP is executed symbolically with
concH as input, using conj as the initial path condition. If
the symbolic execution explores a path where preP returns
true, then the remaining symbolic values in concH can be
assigned concrete values in such a way that preP is satisfied.
In that case, the algorithm retrieves the path condition of
the path, solutionPC, which contains the constraints over
the primitive symbolic fields of concH that lead to the
satisfiability of preP . The algorithm returns solutionPC
along with concH at line 24. These components together are
a witness of the feasibility of the symbolic state symState
with respect to pre. If no path in the symbolic execution of
preP returns true, concH and conj cannot satisfy preP .
Then, the candidate is discarded and NEXTHEAP is queried
for the next one. If no candidate satisfies both preH and preP ,
the symbolic state is deemed infeasible with respect to pre
and scopes, and null is returned at line 29.

For example, to decide about the satisfiability of the last
symbolic state in Fig. 2, preP is symbolically executed
on candidates concH using as initial path condition: 0 <
numProcesses ∧memCount > 0. As first = null in
all concH, all paths in the symbolic execution will return false
at line 44 of preP in Fig. 3. That is because memCount = 0
cannot be true, as the path condition states that memCount >
0. Thus, the symbolic state is correctly identified as infeasible.

D. PLI’s symbolic execution approach

PLI invokes the solver whenever a symbolic state is modi-
fied during symbolic execution. The solver is used not only to

verify the feasibility of lazy branches but also for traditional
symbolic execution branches. We refer to the latter kind of
branches as “primitive branches”. This is crucial because
constraints added to the path condition can conflict with the
representation invariants of heap-allocated inputs, and thus
violate the program’s precondition. However, invoking the
solver often has an impact on the overall performance of PLI.
For this reason, PLI also implements an optimization to avoid
unnecessary solver queries. It consists of saving the solutions
found by a previous solver call and checking whether they
are still valid for subsequent symbolic states. In such cases, it
reuses previous solutions to avoid calling the solver.

Function PLIALGORITHM of Algorithm 1 describes the
behavior of PLI in the different kinds of nodes in the symbolic
execution tree. The optimization is performed if a solution
exists for the parent of the current node, thus it requires
that the node has a parent (line 40). If the current branch
is primitive (line 41) the symbolic heap remains the same,
and only the program path condition has changed. Thus, the
algorithm checks if the new path condition is satisfiable in
conjunction with solution of the path condition found for
the parent node (line 42). In such a case, the newly added
constraint does not violate the constraints that make the current
heap solution feasible with respect to the precondition. Thus,
the algorithm saves the current solution in the current node and
returns true without calling the solver (lines 43-45). When the
current branch is due to a lazy initialization of a reference field
(a lazy branch in line 47), the symbolic heap must have been
changed, but the path condition remains the same as in the
parent node. The algorithm checks if the solution found for
the symbolic heap in the parent node is also a solution for the
current heap (line 48). In this case, PLI stores the solutions for
the previous symbolic state in the current node, and returns
true without calling the solver (lines 49-51).

If a previous solution cannot be reused, PLISOLVER must
be invoked (line 55). If it finds a solution (line 56), the
symbolic state is feasible with respect to the program’s pre-
condition. The solution is stored in the current node and
PLIALGORITHM returns true (lines 57-59), indicating that
the exploration of the current branch continues. If the solver
finds no solution, the current symbolic state is infeasible with
respect to the precondition and PLIALGORITHM returns false
(line 61). Thus, the branch is infeasible and is pruned out.

E. Soundness and Completeness of PLI

PLI is sound: it only prunes symbolic states that are infea-
sible with respect to the precondition and the given scopes.
PLI is complete: as it examines all feasible symbolic states
explored by LI. Below, we sketch a proof of the soundness
and completeness of PLI with respect to LI.

Theorem 1. Let p be the program under analysis with
precondition pre = preH ∧ preP , and let scopes be the
bounds for the analysis. Let s be a symbolic state that is
feasible with respect to pre and scopes, s is explored along
the execution of p using LI if and only if s is explored along
the execution of p using PLI.



Proof (soundness) ( =⇒ ): Assume that there exists a
symbolic state s (symH, pathCond) satisfying pre within
scopes that is explored by LI, but is deemed infeasible and
thus discarded by PLI. We will show that this assumption
leads to a contradiction. There are two cases in which PLI
may discard s. In the first case, no bounded concrete heap for
s satisfying preH and symH is found by SymSolve (line 17
of the pseudocode). Notice that SymSolve performs a bounded
exhaustive search with the same scopes as LI. Hence, if it
cannot find a concrete heap satisfying preH , then s is not
feasible with respect to pre for the given scopes, and we have
arrived to a contradiction. In the second case, every bounded
concrete heap s′ satisfying preH found by SymSolve either
does not satisfy pathCond (SMT (conj) = UNSAT at line
21), or does not satisfy preP in conjunction with pathCond
(solutionPC = null at line 23). Let s′ be a concrete heap
candidate returned by SymSolve. If s′ contradicts the path
condition, then s′ is not a feasible concretization of s because
it cannot exercise the current path. If there is no way for s′ to
satisfy preP and pathCond, then it cannot satisfy pre in a
way that exercises the current path. Therefore, s is not feasible
with respect to pre for the scopes, and we have a contradiction.

Proof (completeness) ( ⇐= ): This is trivial since PLI
traverses the same symbolic execution tree as LI but prunes
infeasible states along the way. Therefore, if a feasible state
is explored by PLI, it is guaranteed to be explored by LI.

IV. EVALUATION

Our evaluation is guided by three research questions:
1) RQ1: How does PLI compare to related approaches in

terms of explored symbolic execution paths? We assess the
number of paths explored by PLI against related techniques
on 25 subjects. Our hypothesis is that PLI can reduce this
number significantly, and therefore improve scalability.

2) RQ2: How does the execution cost of PLI compare to
related approaches? PLI’s costlier solving approach may have
a negative impact on the execution time. We thus compare PLI
against related techniques in this respect on the same subjects.
Our hypothesis is that PLI is in line with the state-of-the-art.

3) RQ3: How do the optimizations affect the performance
of PLI? We evaluate the impact of the optimizations imple-
mented in PLI by enabling and/disabling them on each subject.
Our hypothesis is that our optimizations have a positive impact
on both aspects.

A. Subjects

We evaluate PLI on a set of subjects from the literature. Our
subjects consist of 12 classes and 25 methods with complex
heap-allocated inputs. The subjects include four implemen-
tations of data structures from the java.util standard li-
brary: LinkedList (circular, doubly-linked list), HashMap
(hash tables based map implementation) and TreeSet and
TreeMap (Red-Black Tree based implementations of set
and map respectively). We also consider five client programs
of the aforementioned classes, originally from the SF110
benchmark [19]: Template (stores data in a LinkedList

and uses a HashMap for indexing), TransportStats
(uses two TreeMaps to keep track of transferred bytes),
DictionaryInfo (relies also on TreeMaps to store in-
dexed data), SQLFilterClauses (defines a HashMap
of HashMaps to store information about database queries),
and CombatantStatistic (also uses a HashMap of
HashMaps to store game statistics). Finally, we include an
implementation of a scheduler of processes, Schedule,
originally from the SIR benchmark [18]; and two implemen-
tations of data structures, AvlTree from the book [20] and
BinomialHeap from the evaluation of BLISS [21]. All
case studies but AvlTree and BinomialHeap were used
in the experimental assessment of LISSA [14], where preH
and scopes were already specified. We manually implemented
preP for all cases and preH and scopes only for AvlTree
and BinomialHeap.

B. Experimental Procedure

We compare PLI against related symbolic execution ap-
proaches that at most require an operational specification for
concrete structures, in the same programming language as the
programs (notice that DRIVER employs the implementation of
routines from the API).

DRIVER: an eager approach that implements a driver pro-
gram to enumerate the symbolic inputs. The driver repeatedly
executes insertion methods from the API of the program
under analysis, interleaving their executions using SPF’s non-
deterministic operators [17]. The insertion routines of the
driver are executed symbolically, generating symbolic heaps
with fully concrete reference fields. The drivers used in our
experiments were taken from [14], except for AvlTree and
BinomialHeap, which we manually implemented.

IFPRE: another eager approach, commonly used in the
literature [6], [13]. It enumerates heap-allocated inputs by
performing a symbolic execution with lazy initialization of the
operational specification pre before the symbolic execution of
the target program p. In other words, it symbolically executes
IF (pre(s)) THEN p(s).

LIHYBRID: the baseline for automated lazy initialization-
based approaches. It automatically derives a hybrid precon-
dition [14], [21] from pre to decide about the feasibility of
symbolic heaps. The hybrid precondition works like pre when
it accesses fields with concrete values (and it might be able
to discard some infeasible heaps), but it returns that the heap
is feasible as soon as it finds a field with a symbolic value. It
can thus produce many false positives.

LISSA: the most recent lazy approach, employs the special-
ized solver SymSolve to identify and prune lazy branches that
violate preH. It addresses the satisfiability of symbolic heaps
independently of the program path condition, which can result
in the exploration of infeasible symbolic states (see Section II).

We executed each technique on every subject program,
incrementally increasing the scopes. We used a workstation
with a Xeon Gold 6154 CPU (3GHz) and Debian Linux 11
OS. Each execution used a single CPU core, a maximum heap
size of 4GB and a 1 hour timeout. PLI’s implementation and



5 10
Scope

102

104

106

Ex
pl

or
ed

 P
at

hs
AvlTree

5 10 15
Scope

102

104

Ex
pl

or
ed

 P
at

hs

BinomialHeap

1 2 3 4 5 6 7 8 9 10
Scope

103

105

Ex
pl

or
ed

 P
at

hs

HashMap

0 10 20
Scope

102

104

Ex
pl

or
ed

 P
at

hs

LinkedList

5 10
Scope

102

104

106

Ex
pl

or
ed

 P
at

hs

TreeMap

1 2 3 4 5 6 7 8 9
Scope

102

104

106
Ex

pl
or

ed
 P

at
hs

TransportStats

5 10 15
Scope

102

104

106

Ex
pl

or
ed

 P
at

hs

Schedule

5 10
Scope

102

104

106

Ex
pl

or
ed

 P
at

hs

TreeSet

5 10 15
Scope

103

105

Ex
pl

or
ed

 P
at

hs

CombatantStatistic

1 2 3 4 5 6 7 8 9
Scope

102

104

Ex
pl

or
ed

 P
at

hs

DictionaryInfo

1 2 3
Scope

103

104

Ex
pl

or
ed

 P
at

hs

SQLFilterClauses

1 2 3 4 5 6 7 8
Scope

103

105

Ex
pl

or
ed

 P
at

hs

Template

DRIVER IFPRE LIHYBRID LISSA PLI

Fig. 4. Number of paths explored by each technique and for each scope, within a timeout of one hour.

replication package to reproduce the experiments can be found
online [22]–[24].

C. Experimental Results

RQ1: Number of Explored Paths: Fig. 4 plots the number
of paths explored by each technique in each subject (an
average over the considered methods) for increasing scopes, in
logarithmic scale. Notice that PLI explores significantly fewer
paths than related techniques in 10 out of 12 cases, while for
BinomialHeap and LinkedList it ties with IFPRE and
LISSA.

In comparison to eager approaches, PLI explores at least
one order of magnitude fewer paths in most cases, particu-
larly when considering larger scopes. This reduction can be
attributed to the over-concretization of the heap performed by
eager techniques. Eager techniques enumerate all the possible
concretizations of the heap, which often grow exponentially
with the scope. In contrast, PLI is a lazy approach that con-
cretizes the heap on-demand as the program accesses it during
analysis. In summary, PLI achieves a significant reduction of
78% and 67% in the number of explored paths compared to
DRIVER and IFPRE, respectively. DRIVER explores more
paths than IFPRE because it employs symbolic execution of
API calls, which can generate repeated inputs. This allows PLI
to scale better than eager techniques in most of the cases.

PLI outperforms the lazy approaches LIHYBRID and LISSA,
reducing the number of paths by 66% and 43% respectively.
This is attributed to PLI’s ability to eliminate infeasible paths.
LIHYBRID’s automatically derived hybrid preconditions con-
tribute to a substantial over-approximation of the state space,
leading to a high number of false positives. Although LISSA is
more precise than LIHYBRID, it still fails to prune infeasible
paths arising from inconsistencies between the symbolic heap
and the path condition.

As infeasible paths tend to grow exponentially with respect
to the scope, the scalability of the analysis is significantly
compromised. This is particularly evident in the case of
LIHYBRID, which scales poorly due to a high number of
false positives. PLI maintains a similar scalability to LISSA
while eliminating false positives during analysis. In four cases,
PLI outperforms LISSA in terms of scalability, while LISSA
performs better than PLI in four other cases. Both techniques
achieve the same scope in the remaining cases.

Furthermore, infeasible paths usually lead to false alarms.
LIHYBRID produced many false alarms in most cases. Con-
sidering the highest scope reached for each case, LISSA pro-
duced 1075 false alarms in Schedule, 10,378 in AvlTree,
and 60 in CombatantStatistic. This places a significant
burden on users, who must manually inspect and discard these
false alarms. In contrast, PLI analysis did not produce any false
alarms, as all the explored paths are feasible.
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Fig. 5. Symbolic execution time of each technique for each scope, within a timeout of one hour.

RQ2: Execution Time: Figure 5 shows the average execution
time of the approaches for increasingly larger scopes in our
subjects. PLI performs better than lazy approaches in the
majority of cases, due to a reduction in the number of explored
paths through the elimination of infeasible ones. Notice that
PLI uses a more expensive solver, which can negatively affect
performance. Despite this, PLI’s precise nature still yields
improved performance in most cases. LISSA only outperforms
PLI in HashMap and it’s clients (SQLFilterClauses,
Template). In these cases, preP performs bitwise operations
for hash table lookups, which are very expensive for the SMT
solver in the current version of SPF. As LISSA does not
use preP, it does not suffer this performance overhead. We
are currently looking for ways of fixing this issue. Eager
approaches perform well in a few cases (e.g. DRIVER in
BinomialHeap, IFPRE in CombatantStatistic), but
in most cases the costs of enumerating inputs and performing
symbolic execution on each of them outweigh the costs of
using a precise lazy approach as PLI.

Finally, notice that method extractMin() of
BinomialHeap contains a known a bug [25] that only
manifests when using binomial heap inputs with at least 13
nodes. This defect leads to inconsistencies between the size
of the binomial heap and the actual number of nodes in the
structure. PLI can successfully identify this bug. It is the only
approach, beside DRIVER, which is able to reach scope 13.

TABLE I
PERFORMANCE IMPROVEMENT OF THE APPLIED OPTIMIZATION FOR EACH

SUBJECT.

Subject Reduction ⇓
Solver Calls (%) Time (sec.)

AvlTree 25% 2378
BinomialHeap 11% 1409
CombatantStatistic 45% 900
DictionaryInfo 18% 2544
HashMap 46% 35
LinkedList 14% 1
Schedule 22% 1544
SQLFilterClauses 66% 68
Template 55% 63
TransportStats 20% 849
TreeMap 18% 2141
TreeSet 18% 3728

Average 29.8% 1305

RQ3: Impact of the Optimization: Table I shows the per-
formance improvement achieved by enabling the PLI’s opti-
mization described in Section III-D. The results demonstrate
that the optimization effectively avoids a significant number
of solver calls across various cases. Specifically, it prevents
more than 40% of solver calls in 4 out of 12 cases and
over 15% of solver calls in 10 out of 12 cases, with an
average of 29.8%. Regarding execution time, the optimization
consistently saves time in all cases, with an average time



savings of over 20 minutes. The optimization does not provide
a significant improvement in LinkedList because it has the
least complex precondition among all cases, and specifically it
lacks constraints over the primitive fields (contents) of the list.
In summary, the proposed optimization significantly improves
performance across the majority of cases.

V. THREATS TO VALIDITY

Threats to external validity may arise from the selection of
our subjects. Our experiments consider on a relatively small
set of classes from the literature for which heap preconditions
were available. Due to the limited number of subjects, our
findings cannot be confirmed with significant statistical confi-
dence. However, the selected subjects are highly representative
of programs that manipulate complex heap inputs, exhibiting
complex preconditions over the heaps. Moreover, some of the
classes were taken from real-world programs (SF110 [19]).
We believe that our results provide initial evidence of the
capabilities of PLI to enable efficient symbolic execution of
this kind of programs. Another threat to validity concerns the
correctness of our PLI prototype implementation. To mitigate
this threat, we conducted differential testing between PLI and
the IFPRE approach. The testing procedure involved executing
PLI on the program precondition pre(s) and comparing the
number of explored paths with those obtained by executing the
IFPRE technique with no subject program (IF (pre(s))
THEN skip;) so that the IF statement acts as a ground truth,
ruling out all infeasible inputs. By verifying that the number of
paths is the same for both approaches, we gain a higher degree
of confidence that PLI’s implementation adequately explores
all the intended paths (neither more nor less). Moreover, we
make our dataset and implementation available at [22]–[24].

VI. RELATED WORK

Symbolic execution of heap-allocated data has been widely
studied in the literature. [2], [6] introduced the idea of LI,
using operational hybrid preconditions to prune infeasible
paths. As these hybrid preconditions can result in imprecise
analysis, several techniques have been proposed to address
this issue. Some approaches address the problem by com-
plementing LI either with precomputed bounds to reduce
the number of nondeterministic choices, as in [26], or with
equivalent preconditions written in declarative specifications
languages, such as BLISS [21], or captured via machine
learning algorithms [27]. Others, such as HEX [13], replace
the use of hybrid preconditions by using a unique specification
provided in a declarative language specifically designed to de-
scribe properties of symbolic structures. PLI differs from these
approaches since it only requires an operational precondition
written in the same language as the target program.

LISSA [14] introduced a solver for symbolic structures
that relies exclusively on operational predicates for concrete
structures. This has the advantage of not requiring additional
specifications. However, LISSA faces another drawback of
lazy initialization: treating heap and path conditions separately
leads to the exploration of infeasible paths. In fact, this is the

main limitation that motivated our approach. PLI addresses the
feasibility of both the path condition and the symbolic heap
together, enabling the detection of inconsistencies between
them. As a result, PLI eliminates the occurrence of false
positives and, subsequently, false alarms during the analysis.

Symbolic execution has been also successfully applied in
other contexts. KLEE [4] is a SE approach that specifically
targets C programs. As far as we know, KLEE does not
implement lazy initialization. StarFinder [28], uses declarative
predicates written in Separation Logic [29] to reason about
symbolic heaps, enabling dynamic symbolic execution tech-
nique for programs that involve heap inputs. Pex [7] focuses
on C#. When the program under analysis involves complex
heap inputs, Pex requires the user to manually provide “object
factories”, which are responsible for generating the heap inputs
to use in the dynamic symbolic execution.

Finally, symbolic execution approaches have been used
in combination with other techniques to improve specific
tasks, in particular test generation. Seeker [30] is built on
top of Pex and uses a combination of static and dynamic
analysis to achieve high-coverage testing. SUSHI [5] combines
evolutionary computation and symbolic execution to produce
test inputs for programs with complex heap-allocated data.

VII. CONCLUSIONS

In this paper, we introduced PLI, a complete and sound lazy
initialization approach for the symbolic execution of programs
with complex heap-allocated inputs. Unlike existing lazy ap-
proaches, PLI can determine the feasibility of a symbolic heap
taking into account the path condition. This allows PLI to
detect and prune many infeasible paths that arise when the
symbolic heap and the path condition are considered together.
Moreover, PLI requires only a precondition provided as an
operational predicate in the same programming language as
the code under analysis.

Our experimental evaluation demonstrates that PLI out-
performs eager approaches in terms of execution time and
scalability. Due to its lazy nature, it avoids the exploration
of unnecessary concretizations of the heap, resulting in im-
proved performance. Furthermore, the experiments reveal that
PLI effectively eliminates false positives encountered in the
fastest lazy initialization-based approach [14], while main-
taining comparable performance and scalability. Although
PLI’s solving algorithm is computationally more expensive
than LISSA’s, the time saved by avoiding the exploration of
infeasible paths outweighs the solving cost.
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